Skip to main content

Not So Normal Unhealthy Lean

  • Chapter
  • First Online:
The Active Female

Abstract

Not all women who have a normal weight are healthy. There are three main types of unhealthy lean including metabolically unhealthy normal weight (MUNW), normal weight with central obesity (NWCO), and normal weight obesity (NWO). These unhealthy lean individuals have an increased risk for cardiometabolic disease and mortality compared to healthy lean, but often, they are undiagnosed, since their body weight is considered “normal”. Some associations between age, sex, ethnicity, genetics, and lifestyle factors with unhealthy lean have been described. Lifestyle interventions including diet and exercise may help to improve the health of these individuals. However, there are many gaps in the past literature regarding etiology, pathophysiology, and interventions, because this is an understudied area. Furthermore, there is a lack of consensus regarding the definition of different types of unhealthy lean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117–28.

    PubMed  PubMed Central  Google Scholar 

  2. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lon). 2008;32(3):S56–S9.

    Google Scholar 

  3. Franco LP, Morais CC, Cominetti C. Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev. 2016;74(9):558–70.

    PubMed  Google Scholar 

  4. Ding C, Chan Z, Magkos F. Lean, but not healthy: the ‘metabolically obese, normal-weight’ phenotype. Curr Opin Clin Nutr Metab Care. 2016;19(6):408–17.

    CAS  PubMed  Google Scholar 

  5. Bosomworth NJ. Normal-weight central obesity: unique hazard of the toxic waist. Can Fam Physician. 2019;65(6):399–408.

    PubMed  PubMed Central  Google Scholar 

  6. Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2011;36:286.

    Google Scholar 

  7. Badoud F, Perreault M, Zulyniak MA, Mutch DM. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals. FASEB J. 2015;29(3):748–58.

    CAS  PubMed  Google Scholar 

  8. Klitgaard HB, Kilbak JH, Nozawa EA, Seidel AV, Magkos F. Physiological and lifestyle traits of metabolic dysfunction in the absence of obesity. Curr Diab Rep. 2020;20(6):17.

    CAS  PubMed  Google Scholar 

  9. Van Hulst A, Ybarra M, Mathieu M-E, Benedetti A, Paradis G, Henderson M. Determinants of new onset cardiometabolic risk among normal weight children. Int J Obes. 2020;44(4):781–9.

    Google Scholar 

  10. Xia L, Dong F, Gong H, Xu G, Wang K, Liu F, et al. Association between indices of body composition and abnormal metabolic phenotype in normal-weight Chinese adults. Int J Environ Res Public Health. 2017;14(4).

    Google Scholar 

  11. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Body size phenotypes and low muscle mass: the Korean Sarcopenic Obesity Study (KSOS). J Clin Endocrinol Metab. 2013;98(2):811–7.

    CAS  PubMed  Google Scholar 

  12. Lu Y-C, Lin YC, Yen AM-F, Chan WP. Dual-energy X-ray absorptiometry-assessed adipose tissues in metabolically unhealthy normal weight Asians. Sci Rep. 2019;9(1):17698.

    PubMed  PubMed Central  Google Scholar 

  13. Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol. 2005;25(11):2243–4.

    CAS  PubMed  Google Scholar 

  14. Stefan N, Schick F, Haring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26(2):292–300.

    CAS  PubMed  Google Scholar 

  15. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.

    PubMed  Google Scholar 

  16. Lee SH, Han K, Yang HK, Kim HS, Cho JH, Kwon HS, et al. A novel criterion for identifying metabolically obese but normal weight individuals using the product of triglycerides and glucose. Nutr. Diabetes. 2015;5(4):e149.

    CAS  Google Scholar 

  17. Hashemipour S, Esmailzadehha N, Hamid H, Oveisi S, Yakhchaliha P, Ziaee A. Association of metabolic syndrome components with insulin resistance in normal weight population: the Qazvin Metabolic Diseases study. J Endocrinol Investig. 2015;38(10):1111–5.

    CAS  Google Scholar 

  18. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005;112(17):2735–52.

    PubMed  Google Scholar 

  19. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.

    CAS  PubMed  Google Scholar 

  20. Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y, Boarin S, Korinek J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010;31(6):737–46.

    PubMed  Google Scholar 

  21. Dickey RA, Bartuska D, Bray GW, Callaway CW, Davidson ET, Feld S, et al. AACE/ACE Position statement on the prevention, diagnosis, and treatment of obesity (1998 revision). Endocr Pract. 1998;4(5):297–350.

    Google Scholar 

  22. Wijayatunga NN, Dhurandhar EJ. Normal weight obesity and unaddressed cardiometabolic health risk-a narrative review. Int J Obes. 2021;45(10):2141–55.

    Google Scholar 

  23. Viitasalo A, Pitkänen N, Pahkala K, Lehtimäki T, Viikari JSA, Raitakari O, et al. Increase in adiposity from childhood to adulthood predicts a metabolically obese phenotype in normal-weight adults. Int J Obes. 2020;44(4):848–51.

    CAS  Google Scholar 

  24. Song P, Li X, Bu Y, Ding S, Zhai D, Wang E, et al. Temporal trends in normal weight central obesity and its associations with cardiometabolic risk among Chinese adults. Sci Rep. 2019;9(1):5411.

    PubMed  PubMed Central  Google Scholar 

  25. Kim HY, Kim JK, Shin GG, Han JA, Kim JW. Association between abdominal obesity and cardiovascular risk factors in adults with normal body mass index: based on the sixth Korea National Health and Nutrition Examination Survey. J Obes Metab Syndr. 2019;28(4):262–70.

    PubMed  PubMed Central  Google Scholar 

  26. Mohamed SF, Haregu TN, Khayeka-Wandabwa C, Muthuri SK, Kyobutungi C. Magnitude and predictors of normal-weight central obesity—the AWI-Gen study findings. Glob Health Action. 2019;12(1):1685809.

    PubMed  PubMed Central  Google Scholar 

  27. De Lorenzo A, Martinoli R, Vaia F, Di Renzo L. Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovasc Dis. 2006;16(8):513–23.

    PubMed  Google Scholar 

  28. Berg C, Strandhagen E, Mehlig K, Subramoney S, Lissner L, Björck L. Normal weight adiposity in a Swedish population: how well is cardiovascular risk associated with excess body fat captured by BMI? Obes Sci Pract. 2015;1(1):50–8.

    PubMed  PubMed Central  Google Scholar 

  29. Batsis JA, Sahakyan KR, Rodriguez-Escudero JP, Bartels SJ, Somers VK, Lopez-Jimenez F. Normal weight obesity and mortality in United States subjects ≥60 years of age (from the Third National Health and Nutrition Examination Survey). Am J Cardiol. 2013;112(10):1592–8.

    PubMed  Google Scholar 

  30. Ramsaran C, Maharaj RG. Normal weight obesity among young adults in Trinidad and Tobago: prevalence and associated factors. Int J Adolesc Med Health. 2017;29(2).

    Google Scholar 

  31. Mannisto S, Harald K, Kontto J, Lahti-Koski M, Kaartinen NE, Saarni SE, et al. Dietary and lifestyle characteristics associated with normal-weight obesity: the National FINRISK 2007 Study. Br J Nutr. 2014;111(5):887–94.

    PubMed  Google Scholar 

  32. Zhang S, Zhao M, Wang F, Liu J, Zheng H, Lei P. Relationship between normal weight obesity and mild cognitive impairment is reflected in cognitive-related genes in human peripheral blood mononuclear cells. Psychogeriatrics. 2020;20(1):35–43.

    CAS  PubMed  Google Scholar 

  33. Liu PJ, Ma F, Lou HP, Zhu YN. Normal-weight central obesity is associated with metabolic disorders in Chinese postmenopausal women. Asia Pac J Clin Nutr. 2017;26(4):692–7.

    CAS  PubMed  Google Scholar 

  34. Hyun YJ, Koh SJ, Chae JS, Kim JY, Kim OY, Lim HH, et al. Atherogenecity of LDL and unfavorable adipokine profile in metabolically obese, normal-weight woman. Obesity (Silver Spring). 2008;16(4):784–9.

    CAS  PubMed  Google Scholar 

  35. Katsuki A, Sumida Y, Urakawa H, Gabazza EC, Murashima S, Maruyama N, et al. Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance. Diabetes Care. 2003;26(8):2341–4.

    CAS  PubMed  Google Scholar 

  36. Wang B, Zhuang R, Luo X, Yin L, Pang C, Feng T, et al. Prevalence of metabolically healthy obese and metabolically obese but normal weight in adults worldwide: a meta-analysis. Horm Metab Res. 2015;47(11):839–45.

    CAS  PubMed  Google Scholar 

  37. Gujral UP, Vittinghoff E, Mongraw-Chaffin M, Vaidya D, Kandula NR, Allison M, et al. Cardiometabolic abnormalities among normal-weight persons from five racial/ethnic groups in the united states: a cross-sectional analysis of two cohort studies. Ann Intern Med. 2017;166(9):628–36.

    PubMed  PubMed Central  Google Scholar 

  38. Mainous AG 3rd, Tanner RJ, Jo A, Anton SD. Prevalence of prediabetes and abdominal obesity among healthy-weight adults: 18-year trend. Ann Fam Med. 2016;14(4):304–10.

    PubMed  PubMed Central  Google Scholar 

  39. Mokha JS, Srinivasan SR, Dasmahapatra P, Fernandez C, Chen W, Xu J, et al. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa Heart Study. BMC Pediatr. 2010;10:73.

    PubMed  PubMed Central  Google Scholar 

  40. Martinez KE, Tucker LA, Bailey BW, LeCheminant JD. Expanded normal weight obesity and insulin resistance in US adults of the National Health and Nutrition Examination Survey. J Diabetes Res. 2017;2017:9502643.

    PubMed  PubMed Central  Google Scholar 

  41. Ohlsson B, Manjer J. Sociodemographic and lifestyle factors in relation to overweight defined by BMI and “normal-weight obesity”. J Obes. 2020;2020.

    Google Scholar 

  42. Correa-Rodríguez M, González-Ruíz K, Rincón-Pabón D, Izquierdo M, García-Hermoso A, Agostinis-Sobrinho C, et al. Normal-weight obesity is associated with increased cardiometabolic risk in young adults. Nutrients. 2020;12(4):1106.

    PubMed  PubMed Central  Google Scholar 

  43. Tayefi M, Tayefi B, Darroudi S, Mohammadi-Bajgiran M, Mouhebati M, Heidari-Bakavoli A, et al. There is an association between body fat percentage and metabolic abnormality in normal weight subjects: iranian large population. Transl Metab Syndr Res. 2019;2(1):11–6.

    Google Scholar 

  44. Olafsdottir AS, Torfadottir JE, Arngrimsson SA. Health behavior and metabolic risk factors associated with normal weight obesity in adolescents. PLoS One. 2016;11(8):e0161451.

    PubMed  PubMed Central  Google Scholar 

  45. Musalek M, Parizkova J, Godina E, Bondareva E, Kokstejn J, Jirovec J, et al. Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: normal weight obesity in middle-school-aged children (9 to 12). Front Pediatr. 2018;6:371.

    PubMed  PubMed Central  Google Scholar 

  46. Wiklund P, Törmäkangas T, Shi Y, Wu N, Vainionpää A, Alen M, et al. Normal-weight obesity and cardiometabolic risk: a 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity. 2017;25(6):1077–82.

    CAS  PubMed  Google Scholar 

  47. Musalek M, Kokstejn J, Papez P, Scheffler C, Mumm R, Czernitzki AF, et al. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropol Anz. 2017;74(3):203–12.

    PubMed  Google Scholar 

  48. García-Hermoso A, Agostinis-Sobrinho C, Camargo-Villalba GE, González-Jiménez NM, Izquierdo M, Correa-Bautista JE, et al. Normal-weight obesity is associated with poorer cardiometabolic profile and lower physical fitness levels in children and adolescents. Nutrients. 2020;12(4).

    Google Scholar 

  49. Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650.

    PubMed  PubMed Central  Google Scholar 

  50. Guglielmi V, Sbraccia P. Obesity phenotypes: depot-differences in adipose tissue and their clinical implications. Eat Weight Disord. 2018;23(1):3–14.

    PubMed  Google Scholar 

  51. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    CAS  PubMed  Google Scholar 

  52. Eckel N, Mühlenbruch K, Meidtner K, Boeing H, Stefan N, Schulze MB. Characterization of metabolically unhealthy normal-weight individuals: risk factors and their associations with type 2 diabetes. Metabolism. 2015;64(8):862–71.

    CAS  PubMed  Google Scholar 

  53. Madeira FB, Silva AA, Veloso HF, Goldani MZ, Kac G, Cardoso VC, et al. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS One. 2013;8(3):e60673.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moy FM, Loh DA. Cardiometabolic risks profile of normal weight obese and multi-ethnic women in a developing country. Maturitas. 2015;81(3):389–93.

    PubMed  Google Scholar 

  55. Jean N, Somers VK, Sochor O, Medina-Inojosa J, Llano EM, Lopez-Jimenez F. Normal-weight obesity: implications for cardiovascular health. Curr Atheroscler Rep. 2014;16(12):464.

    PubMed  Google Scholar 

  56. Rao G, Powell-Wiley Tiffany M, Ancheta I, Hairston K, Kirley K, Lear Scott A, et al. Identification of obesity and cardiovascular risk in ethnically and racially diverse populations. Circulation. 2015;132(5):457–72.

    PubMed  Google Scholar 

  57. Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev. 2019;56:100980.

    CAS  PubMed  Google Scholar 

  58. Cuthbertson DJ, Steele T, Wilding JP, Halford JC, Harrold JA, Hamer M, et al. What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications? Int J Obes. 2017;41(6):853–65.

    CAS  Google Scholar 

  59. Kosmala W, Jedrzejuk D, Derzhko R, Przewlocka-Kosmala M, Mysiak A, Bednarek-Tupikowska G. Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation. Circ Cardiovasc Imaging. 2012:5.

    Google Scholar 

  60. De Lorenzo A, Del Gobbo V, Premrov MG, Bigioni M, Galvano F, Di Renzo L. Normal-weight obese syndrome: early inflammation? Am J Clin Nutr. 2007;85(1):40–5.

    PubMed  Google Scholar 

  61. Moreno-Indias I, Oliva-Olivera W, Omiste A, Castellano-Castillo D, Lhamyani S, Camargo A, et al. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function. Transl Res. 2016;172:6–17.e3.

    CAS  PubMed  Google Scholar 

  62. Zhang J-M, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Katsuki A, Suematsu M, Gabazza EC, Murashima S, Nakatani K, Togashi K, et al. Increased oxidative stress is associated with decreased circulating levels of adiponectin in Japanese metabolically obese, normal-weight men with normal glucose tolerance. Diabetes Res Clin Pract. 2006;73(3):310–4.

    CAS  PubMed  Google Scholar 

  64. Di Renzo L, Bigioni M, Del Gobbo V, Premrov MG, Barbini U, Di Lorenzo N, et al. Interleukin-1 (IL-1) receptor antagonist gene polymorphism in normal weight obese syndrome: relationship to body composition and IL-1 alpha and beta plasma levels. Pharmacol Res. 2007;55(2):131–8.

    PubMed  Google Scholar 

  65. Di Renzo L, Galvano F, Orlandi C, Bianchi A, Di Giacomo C, La Fauci L, et al. Oxidative stress in normal-weight obese syndrome. Obesity (Silver Spring). 2010;18(11):2125–30.

    PubMed  Google Scholar 

  66. Marques-Vidal P, Pecoud A, Hayoz D, Paccaud F, Mooser V, Waeber G, et al. Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis. 2010;20(9):669–75.

    CAS  PubMed  Google Scholar 

  67. Kishimoto N, Okita K, Takada S, Sakuma I, Saijo Y, Chiba H, et al. Lipoprotein metabolism, insulin resistance, and adipocytokine levels in Japanese female adolescents with a normal body mass index and high body fat mass. Circ J. 2009;73(3):534–9.

    CAS  PubMed  Google Scholar 

  68. Srinivasan SR, Wang R, Chen W, Wei CY, Xu J, Berenson GS. Utility of waist-to-height ratio in detecting central obesity and related adverse cardiovascular risk profile among normal weight younger adults (from the Bogalusa Heart study). Am J Cardiol. 2009;104(5):721–4.

    PubMed  Google Scholar 

  69. Karkhaneh M, Qorbani M, Mohajeri-Tehrani MR, Hoseini S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diabetes Metab Disord. 2017;16:49.

    PubMed  PubMed Central  Google Scholar 

  70. Shea JL, King MT, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2012;22(9):741–7.

    CAS  PubMed  Google Scholar 

  71. Kim S, Kyung C, Park JS, Lee SP, Kim HK, Ahn CW, et al. Normal-weight obesity is associated with increased risk of subclinical atherosclerosis. Cardiovasc Diabetol. 2015;14:58.

    PubMed  PubMed Central  Google Scholar 

  72. Karkhaneh M, Qorbani M, Ataie-Jafari A, Mohajeri-Tehrani MR, Asayesh H, Hosseini S. Association of thyroid hormones with resting energy expenditure and complement C3 in normal weight high body fat women. Thyroid Res. 2019;12(1):9.

    PubMed  PubMed Central  Google Scholar 

  73. Miazgowski T, Safranow K, Krzyzanowska-Swiniarska B, Iskierska K, Widecka K. Adiponectin, visfatin and regional fat depots in normal weight obese premenopausal women. Eur J Clin Investig. 2013;43(8):783–90.

    CAS  Google Scholar 

  74. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Med Cell Longev. 2019;2019:8267234.

    Google Scholar 

  75. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378–400.

    PubMed  PubMed Central  Google Scholar 

  76. Lee JH, Jun H-S. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019;10(42).

    Google Scholar 

  77. Barbalho SM, Flato UAP, Tofano RJ, Goulart RA, Guiguer EL, Detregiachi CRP, et al. Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. Int J Mol Sci. 2020;21(10):3607.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Graf C, Ferrari N. Metabolic health-The role of adipo-myokines. Int J Mol Sci. 2019;20(24):6159.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee B, Shao J. Adiponectin and lipid metabolism in skeletal muscle. Acta Pharm Sin B. 2012;2(4):335–40.

    CAS  Google Scholar 

  80. Krause MP, Milne KJ, Hawke TJ. Adiponectin-consideration for its role in skeletal muscle health. Int J Mol Sci. 2019;20(7).

    Google Scholar 

  81. Kim MK, Han K, Kwon HS, Song KH, Yim HW, Lee WC, et al. Normal weight obesity in Korean adults. Clin Endocrinol. 2014;80(2):214–20.

    Google Scholar 

  82. Moon JH, Choo SR, Kim JS. Relationship between low muscle mass and metabolic syndrome in elderly people with normal body mass index. J Bone Metab. 2015;22(3):99–106.

    PubMed  PubMed Central  Google Scholar 

  83. Choi KM. Sarcopenia and sarcopenic obesity. Endocrinol Metab (Seoul). 2013;28(2):86–9.

    PubMed  Google Scholar 

  84. Cheng S, Wiklund P. The effects of muscle mass and muscle quality on cardio-metabolic risk in peripubertal girls: a longitudinal study from childhood to early adulthood. Int J Obes. 2018;42(4):648–54.

    CAS  Google Scholar 

  85. Batsis JA, Sahakyan KR, Rodriguez-Escudero JP, Bartels SJ, Lopez-Jimenez F. Normal weight obesity and functional outcomes in older adults. Eur J Intern Med. 2014;25(6):517–22.

    PubMed  Google Scholar 

  86. Golden NH, Abrams SA. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):e1229–e43.

    PubMed  Google Scholar 

  87. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15(11):2245–50.

    CAS  PubMed  Google Scholar 

  88. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Y, Chen F, Wang H, Yu C, Shao S, Zhao M, et al. Association between forearm bone mineral density and metabolic obesity in a northern Chinese population. Metab Syndr Relat Disord. 2020;18(5):251–9.

    CAS  PubMed  Google Scholar 

  90. Li G, Li Y, Han L, Wang D, Zhang Q, Xiao X, et al. Interaction between early environment and genetic predisposition instigates the metabolically obese, normal weight phenotype in children: findings from the BCAMS study. Eur J Endocrinol. 2020;182(4):393–403.

    CAS  PubMed  Google Scholar 

  91. Robson E, Norris T, Wulaningsih W, Hamer M, Hardy R, Johnson W. The relationship of early-life adversity with adulthood weight and cardiometabolic health status in the 1946 National Survey of Health and Development. Psychosom Med. 2020;82(1):82–9.

    PubMed  Google Scholar 

  92. Buscemi S, Chiarello P, Buscemi C, Corleo D, Massenti MF, Barile AM, et al. Characterization of metabolically healthy obese people and metabolically unhealthy normal-weight people in a general population cohort of the ABCD study. J Diabetes Res. 2017;2017:9294038.

    PubMed  PubMed Central  Google Scholar 

  93. Zhang P, Wang R, Gao C, Jiang L, Lv X, Song Y, et al. Prevalence of central obesity among adults with normal BMI and its association with metabolic diseases in northeast China. PLoS One. 2016;11(7):e0160402.

    PubMed  PubMed Central  Google Scholar 

  94. Dybala MP, Brady MJ, Hara M. Disparity in adiposity among adults with normal body mass index and waist-to-height ratio. iScience. 2019;21:612–23.

    PubMed  PubMed Central  Google Scholar 

  95. Marques-Vidal P, Chiolero A, Paccaud F. Large differences in the prevalence of normal weight obesity using various cut-offs for excess body fat. E Spen Eur E J Clin Nutr Metab. 2008;3(4):e159–e62.

    Google Scholar 

  96. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6(9):714–24.

    PubMed  Google Scholar 

  97. JafariNasabian P, Inglis JE, Reilly W, Kelly OJ, Ilich JZ. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol. 2017;234(1):R37–r51.

    CAS  PubMed  Google Scholar 

  98. Zheng Q, Lin W, Liu C, Zhou Y, Chen T, Zhang L, et al. Prevalence and epidemiological determinants of metabolically obese but normal-weight in Chinese population. BMC Public Health. 2020;20(1):487.

    PubMed  PubMed Central  Google Scholar 

  99. Zhang M, Schumann M, Huang T, Tormakangas T, Cheng S. Normal weight obesity and physical fitness in Chinese university students: an overlooked association. BMC Public Health. 2018;18(1):1334.

    PubMed  PubMed Central  Google Scholar 

  100. De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016;22(2):681–703.

    PubMed  PubMed Central  Google Scholar 

  101. Jia A, Xu S, Xing Y, Zhang W, Yu X, Zhao Y, et al. Prevalence and cardiometabolic risks of normal weight obesity in Chinese population: a nationwide study. Nutr Metab Cardiovasc Dis. 2018;28(10):1045–53.

    CAS  PubMed  Google Scholar 

  102. Patel SA, Shivashankar R, Ali MK, Anjana RM, Deepa M, Kapoor D, et al. Is the “South Asian phenotype” unique to South Asians?: comparing cardiometabolic risk factors in the CARRS and NHANES studies. Glob Heart. 2016;11(1):89–96.e3.

    PubMed  Google Scholar 

  103. Di Renzo L, Bigioni M, Bottini FG, Del Gobbo V, Premrov MG, Cianci R, et al. Normal Weight Obese syndrome: role of single nucleotide polymorphism of IL-1 5Ralpha and MTHFR 677C-->T genes in the relationship between body composition and resting metabolic rate. Eur Rev Med Pharmacol Sci. 2006;10(5):235–45.

    PubMed  Google Scholar 

  104. Di Renzo L, Sarlo F, Petramala L, Iacopino L, Monteleone G, Colica C, et al. Association between −308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis Markers. 2013;35(6):615–23.

    PubMed  PubMed Central  Google Scholar 

  105. Di Renzo L, Bertoli A, Bigioni M, Del Gobbo V, Premrov MG, Calabrese V, et al. Body composition and -174G/C interleukin-6 promoter gene polymorphism: association with progression of insulin resistance in normal weight obese syndrome. Curr Pharm Des. 2008;14(26):2699–706.

    PubMed  Google Scholar 

  106. Di Renzo L, Gloria-Bottini F, Saccucci P, Bigioni M, Abenavoli L, Gasbarrini G, et al. Role of interleukin-15 receptor alpha polymorphisms in normal weight obese syndrome. Int J Immunopathol Pharmacol. 2009;22(1):105–13.

    PubMed  Google Scholar 

  107. Di Renzo L, Gratteri S, Sarlo F, Cabibbo A, Colica C, De Lorenzo A. Individually tailored screening of susceptibility to sarcopenia using p53 codon 72 polymorphism, phenotypes, and conventional risk factors. Dis Markers. 2014;2014:743634.

    PubMed  PubMed Central  Google Scholar 

  108. American College of Sports Medicine. Chapter 1. Benefits and risks associated with physical activity. ACSM’s guidelines for exercise testing and prescription. 10th ed. Lippinocott Williams and Wilkins; 2018. p. 1–21.

    Google Scholar 

  109. Conus F, Allison DB, Rabasa-Lhoret R, St-Onge M, St-Pierre DH, Tremblay-Lebeau A, et al. Metabolic and behavioral characteristics of metabolically obese but normal-weight women. J Clin Endocrinol Metab. 2004;89(10):5013–20.

    CAS  PubMed  Google Scholar 

  110. Dvorak RV, DeNino WF, Ades PA, Poehlman ET. Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women. Diabetes. 1999;48(11):2210–4.

    CAS  PubMed  Google Scholar 

  111. Gutiérrez-Repiso C, Soriguer F, Rojo-Martínez G, García-Fuentes E, Valdés S, Goday A, et al. Variable patterns of obesity and cardiometabolic phenotypes and their association with lifestyle factors in the Di@bet.es study. Nutr Metab Cardiovasc Dis. 2014;24(9):947–55.

    PubMed  Google Scholar 

  112. Hashemipour S, Esmailzadehha N, Mohammadzadeh M, Ziaee A. Association of meat and dairy consumption with normal weight metabolic obesity in men: the Qazvin Metabolic Diseases Study. Eat Weight Disord. 2016;21(3):419–25.

    PubMed  Google Scholar 

  113. Batsis JA, Zbehlik AJ, Scherer EA, Barre LK, Bartels SJ. Normal weight with central obesity, physical activity, and functional decline: data from the osteoarthritis initiative. J Am Geriatr Soc. 2015;63(8):1552–60.

    PubMed  PubMed Central  Google Scholar 

  114. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sørensen TIA, et al. Energy balance measurement: when something is not better than nothing. Int J Obes. 2015;39(7):1109–13.

    CAS  Google Scholar 

  115. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.

    PubMed  Google Scholar 

  116. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.

    PubMed  PubMed Central  Google Scholar 

  117. Bellissimo MP, Cai Q, Ziegler TR, Liu KH, Tran PH, Vos MB, et al. Plasma high-resolution metabolomics differentiates adults with normal weight obesity from lean individuals. Obesity (Silver Spring). 2019;27(11):1729–37.

    CAS  PubMed  Google Scholar 

  118. Bellissimo MP, Bettermann EL, Tran PH, Crain BH, Ferranti EP, Binongo JN, et al. Physical fitness but not diet quality distinguishes lean and normal weight obese adults. J Acad Nutr Diet. 2020;120(12):1963–73.e2.

    PubMed  PubMed Central  Google Scholar 

  119. Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118(11):1752–70.

    CAS  PubMed  Google Scholar 

  120. Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and mortality among adults in the United States: a population-based cohort study. PLoS One. 2018;13(4):e0194697.

    PubMed  PubMed Central  Google Scholar 

  121. Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US Older Adults. Med Sci Sports Exerc. 2018;50(3):458–67.

    PubMed  PubMed Central  Google Scholar 

  122. Choi J, Se-Young O, Lee D, Tak S, Hong M, Park SM, et al. Characteristics of diet patterns in metabolically obese, normal weight adults (Korean National Health and Nutrition Examination Survey III, 2005). Nutr Metab Cardiovasc Dis. 2012;22(7):567–74.

    CAS  PubMed  Google Scholar 

  123. Mirmiran P, Moslehi N, Hosseinpanah F, Sarbazi N, Azizi F. Dietary determinants of unhealthy metabolic phenotype in normal weight and overweight/obese adults: results of a prospective study. Int J Food Sci Nutr. 2020:1–11.

    Google Scholar 

  124. Wang X, Chang X, Zhu Y, Wang H, Sun K. Metabolically obese individuals of normal weight have a high risk of 25-hydroxyvitamin D deficiency. Am J Med Sci. 2016;352(4):360–7.

    PubMed  Google Scholar 

  125. Ashcroft SP, Fletcher G, Philp AM, Jenkinson C, Das S, Hansbro PM, et al. Diet-induced vitamin D deficiency reduces skeletal muscle mitochondrial respiration. J Endocrinol. 2021;249(2):113–24.

    CAS  PubMed  Google Scholar 

  126. Moslehi N, Golzarand M, Hosseinpanah F, Mirmiran P, Azizi F. Dietary intakes of flavonoids and carotenoids and the risk of developing an unhealthy metabolic phenotype. Food Funct. 2020;11(4):3451–8.

    CAS  PubMed  Google Scholar 

  127. Park Y-MM, Steck SE, Fung TT, Zhang J, Hazlett LJ, Han K, et al. Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health in U.S. adults. Clin Nutr. 2017;36(5):1301–9.

    PubMed  Google Scholar 

  128. Amani R, Parohan M, Jomehzadeh N, Haghighizadeh MH. Dietary and biochemical characteristics associated with normal-weight obesity. Int J Vitam Nutr Res. 2019;89(5–6):331–6.

    CAS  PubMed  Google Scholar 

  129. Aung K, Lorenzo C, Hinojosa MA, Haffner SM. Risk of developing diabetes and cardiovascular disease in metabolically unhealthy normal-weight and metabolically healthy obese individuals. J Clin Endocrinol Metab. 2014;99(2):462–8.

    CAS  PubMed  Google Scholar 

  130. Seo Y-G, Choi H-C, Cho B. The Relationship between metabolically obese non-obese weight and stroke: the Korea National Health and Nutrition Examination Survey. PLoS One. 2016;11(8):e0160846.

    PubMed  PubMed Central  Google Scholar 

  131. Thaikruea L, Thammasarot J. Prevalence of normal weight central obesity among Thai healthcare providers and their association with CVD risk: a cross-sectional study. Sci Rep. 2016;6:37100.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fu X, Zhu F, Zhao X, Ma X, Zhu S. Central fat accumulation associated with metabolic risks beyond total fat in normal BMI Chinese adults. Ann Nutr Metab. 2014;64(2):93–100.

    CAS  PubMed  Google Scholar 

  133. Yoo HJ, Kim S, Hwang SY, Hong HC, Choi HY, Seo JA, et al. Vascular inflammation in metabolically abnormal but normal-weight and metabolically healthy obese individuals analyzed with (1)(8)F-fluorodeoxyglucose positron emission tomography. Am J Cardiol. 2015;115(4):523–8.

    PubMed  Google Scholar 

  134. Yoo HJ, Hwang SY, Hong HC, Choi HY, Seo JA, Kim SG, et al. Association of metabolically abnormal but normal weight (MANW) and metabolically healthy but obese (MHO) individuals with arterial stiffness and carotid atherosclerosis. Atherosclerosis. 2014;234(1):218–23.

    CAS  PubMed  Google Scholar 

  135. Ren C, Zhang J, Xu Y, Xu B, Sun W, Sun J, et al. Association between carotid intima-media thickness and index of central fat distribution in middle-aged and elderly Chinese. Cardiovasc Diabetol. 2014;13:139.

    PubMed  PubMed Central  Google Scholar 

  136. Kang S, Kyung C, Park JS, Kim S, Lee S-P, Kim MK, et al. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body Fat: an 18 F-FDG-PET/CT study. Cardiovasc Diabetol. 2014;13(1):70.

    PubMed  PubMed Central  Google Scholar 

  137. Ding C, Chan Z, Chooi YC, Choo J, Sadananthan SA, Chang A, et al. Regulation of glucose metabolism in nondiabetic, metabolically obese normal-weight Asians. Am J Physiol Endocrinol Metab. 2018;314(5):E494–e502.

    CAS  PubMed  Google Scholar 

  138. Ying-Xiu Z, Da-Yong S, Jing-Yang Z, Jin-Shan Z, Zun-Hua C. Blood pressure among children and adolescents with normal weight but large waist circumference in Shandong. China Eur J Pediatr. 2014;173(3):285–9.

    PubMed  Google Scholar 

  139. Hsu ARC, Ames SL, Xie B, Peterson DV, Garcia L, Going SB, et al. Incidence of diabetes according to metabolically healthy or unhealthy normal weight or overweight/obesity in postmenopausal women: the Women’s Health Initiative. Menopause. 2020;27(6):640–7.

    Google Scholar 

  140. Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. The concept of normal weight obesity. Prog Cardiovasc Dis. 2014;56(4):426–33.

    PubMed  Google Scholar 

  141. Cho WK, Kim H, Lee HY, Han KD, Jeon YJ, Jung IA, et al. Insulin resistance of normal weight central obese adolescents in korea stratified by waist to height ratio: results from the Korea National Health and Nutrition Examination Surveys 2008-2010. Int J Endocrinol. 2015;2015:158758.

    PubMed  PubMed Central  Google Scholar 

  142. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Chan Z, Ding C, Chooi YC, Choo J, Sadananthan SA, Sasikala S, et al. Ectopic fat and aerobic fitness are key determinants of glucose homeostasis in nonobese Asians. Eur J Clin Investig. 2019;49(5):e13079.

    Google Scholar 

  144. Malandrino N, Capristo E, Taveira TH, Mingrone G, Wu W-C. Cognitive function in individuals with normal weight obesity: results from the third National Health and Nutrition Examination Survey (NHANES III). J Alzheimers Dis. 2018;65(1):125–35.

    PubMed  Google Scholar 

  145. Park YM, White AJ, Nichols HB, O’Brien KM, Weinberg CR, Sandler DP. The association between metabolic health, obesity phenotype and the risk of breast cancer. Int J Cancer. 2017;140(12):2657–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Iyengar NM, Arthur R, Manson JE, Chlebowski RT, Kroenke CH, Peterson L, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: a secondary analysis of a randomized clinical trial and observational study. JAMA Oncol. 2019;5(2):155–63.

    PubMed  Google Scholar 

  147. Murphy N, Cross AJ, Abubakar M, Jenab M, Aleksandrova K, Boutron-Ruault MC, et al. A nested case-control study of metabolically defined body size phenotypes and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS Med. 2016;13(4):e1001988.

    PubMed  PubMed Central  Google Scholar 

  148. Liang X, Margolis KL, Hendryx M, Rohan TE, Groessl EJ, Thomson CA, et al. Metabolic phenotype and risk of colorectal cancer in normal-weight postmenopausal women. Cancer Epidemiol Biomark Prev. 2017;26(2):155–61.

    Google Scholar 

  149. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann Intern Med. 2013;159(11):758–69.

    PubMed  Google Scholar 

  150. Sun Y, Liu B, Snetselaar LG, Wallace RB, Caan BJ, Rohan TE, et al. Association of normal-weight central obesity with all-cause and cause-specific mortality among postmenopausal women. JAMA Netw Open. 2019;2(7):e197337.

    PubMed  PubMed Central  Google Scholar 

  151. Maffetone PB, Rivera-Dominguez I, Laursen PB. Overfat and underfat: new terms and definitions long overdue. Front Public Health. 2016;4:279.

    PubMed  Google Scholar 

  152. Romashkan SV, Das SK, Villareal DT, Ravussin E, Redman LM, Rochon J, et al. Safety of two-year caloric restriction in non-obese healthy individuals. Oncotarget. 2016;7(15):19124–33.

    PubMed  PubMed Central  Google Scholar 

  153. Chooi YC, Ding C, Chan Z, Choo J, Sadananthan SA, Michael N, et al. Moderate weight loss improves body composition and metabolic function in metabolically unhealthy lean subjects. Obesity (Silver Spring). 2018;26(6):1000–7.

    CAS  PubMed  Google Scholar 

  154. Konrad T, Vicini P, Kusterer K, Höflich A, Assadkhani A, Böhles HJ, et al. alpha-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 1999;22(2):280–7.

    CAS  PubMed  Google Scholar 

  155. Guerrero-Romero F, Rodriguez-Moran M. Serum magnesium in the metabolically-obese normal-weight and healthy-obese subjects. Eur J Intern Med. 2013;24(7):639–43.

    CAS  PubMed  Google Scholar 

  156. Rodríguez-Moran M, Guerrero-Romero F. Oral magnesium supplementation improves the metabolic profile of metabolically obese, normal-weight individuals: a randomized double-blind placebo-controlled trial. Arch Med Res. 2014;45(5):388–93.

    PubMed  Google Scholar 

  157. De Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, et al. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med. 2017;15(1):135.

    PubMed  PubMed Central  Google Scholar 

  158. Di Renzo L, Rizzo M, Sarlo F, Colica C, Iacopino L, Domino E, et al. Effects of dark chocolate in a population of normal weight obese women: a pilot study. Eur Rev Med Pharmacol Sci. 2013;17(16):2257–66.

    PubMed  Google Scholar 

  159. Haghighat N, Ashtary-Larky D, Bagheri R, Mahmoodi M, Rajaei M, Alipour M, et al. The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: a randomised controlled trial. Br J Nutr. 2020;124(10):1044–51.

    CAS  PubMed  Google Scholar 

  160. You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Med. 2013;43(4):243–56.

    PubMed  Google Scholar 

  161. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133–44.

    CAS  PubMed  Google Scholar 

  162. Leal LG, Lopes MA, Batista ML Jr. Physical exercise-induced myokines and muscle-adipose tissue crosstalk: a review of current knowledge and the implications for health and metabolic diseases. Front Physiol. 2018;9:1307.

    PubMed  PubMed Central  Google Scholar 

  163. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    PubMed  Google Scholar 

  164. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.

    PubMed  Google Scholar 

  165. Strasser B, Arvandi M, Siebert U. Resistance training, visceral obesity and inflammatory response: a review of the evidence. Obes Rev. 2012;13(7):578–91.

    CAS  PubMed  Google Scholar 

  166. Rose GL, Skinner TL, Mielke GI, Schaumberg MA. The effect of exercise intensity on chronic inflammation: a systematic review and meta-analysis. J Sci Med Sport. 2021;24(4):345–51.

    PubMed  Google Scholar 

  167. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta. 2010;411(11–12):785–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nguyen T, Obeid J, Ploeger HE, Takken T, Pedder L, Timmons BW. Inflammatory and growth factor response to continuous and intermittent exercise in youth with cystic fibrosis. J Cyst Fibros. 2012;11(2):108–18.

    CAS  PubMed  Google Scholar 

  169. Serra MC, Ryan AS, Ortmeyer HK, Addison O, Goldberg AP. Resistance training reduces inflammation and fatigue and improves physical function in older breast cancer survivors. Menopause. 2018;25(2):211–6.

    PubMed  PubMed Central  Google Scholar 

  170. de Matos MA, Vieira DV, Pinhal KC, Lopes JF, Dias-Peixoto MF, Pauli JR, et al. High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front Physiol. 2018;9:1451.

    PubMed  PubMed Central  Google Scholar 

  171. Zaenker P, Favret F, Lonsdorfer E, Muff G, de Seze J, Isner-Horobeti ME. High-intensity interval training combined with resistance training improves physiological capacities, strength and quality of life in multiple sclerosis patients: a pilot study. Eur J Phys Rehabil Med. 2018;54(1):58–67.

    PubMed  Google Scholar 

  172. Steckling FM, Farinha JB, Santos DL, Bresciani G, Mortari JA, Stefanello ST, et al. High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. Exp Clin Endocrinol Diabetes. 2016;124(10):597–601.

    CAS  PubMed  Google Scholar 

  173. Jung W-S, Hwang H, Kim J, Park H-Y, Lim K. Comparison of excess post-exercise oxygen consumption of different exercises in normal weight obesity women. J Exerc Nutrition Biochem. 2019;23(2):22–7.

    PubMed  PubMed Central  Google Scholar 

  174. Arney BE, Foster C, Porcari J. EPOC: IS IT REAL? DOES IT MATTER? ACSMs Health Fit J. 2019;23(4):9–13.

    Google Scholar 

  175. Saeidifard F, Medina-Inojosa JR, West CP, Olson TP, Somers VK, Bonikowske AR, et al. The association of resistance training with mortality: a systematic review and meta-analysis. Eur J Prev Cardiol. 2020;26(15):1647–65.

    Google Scholar 

  176. Ferreira FC, Bertucci DR, Barbosa MR, Nunes JE, Botero JP, Rodrigues MF, et al. Circuit resistance training in women with normal weight obesity syndrome: body composition, cardiometabolic and echocardiographic parameters, and cardiovascular and skeletal muscle fitness. J Sports Med Phys Fitness. 2017;57(7–8):1033–44.

    CAS  PubMed  Google Scholar 

  177. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68–91.

    CAS  PubMed  Google Scholar 

  178. Lytle JR, Kravits DM, Martin SE, Green JS, Crouse SF, Lambert BS. Predicting energy expenditure of an acute resistance exercise bout in men and women. Med Sci Sports Exerc. 2019;51(7):1532–7.

    PubMed  Google Scholar 

  179. Rawson ES, Walsh TM. Estimation of resistance exercise energy expenditure using accelerometry. Med Sci Sports Exerc. 2010;42(3):622–8.

    PubMed  Google Scholar 

  180. Kelishadi R, Hashemipour M, Sarrafzadegan N, Mohammadifard N, Alikhasy H, Beizaei M, et al. Effects of a lifestyle modification trial among phenotypically obese metabolically normal and phenotypically obese metabolically abnormal adolescents in comparison with phenotypically normal metabolically obese adolescents. Matern Child Nutr. 2010;6(3):275–86.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeeja N. Wijayatunga .

Editor information

Editors and Affiliations

Chapter Review Questions

Chapter Review Questions

  1. 1.

    If a person has a normal BMI (normal weight) it,

    1. (a)

      Indicates good health always

    2. (b)

      Indicates no cardiovascular risk

    3. (c)

      Indicates no central obesity

    4. (d)

      Does not indicate good health always

  2. 2.

    Which of the following is a characteristic feature of metabolically unhealthy normal weight (MUNW)?

    1. (a)

      Normal weight

    2. (b)

      Cardiometabolic risk factors

    3. (c)

      Overweight

    4. (d)

      Both a and b

  3. 3.

    Which of the following are characteristic features of normal weight obesity (NWO)? Mark all correct answers.

    1. (a)

      Normal weight

    2. (b)

      Cardiometabolic risk factors

    3. (c)

      Increased body fat percent

    4. (d)

      Obese BMI

  4. 4.

    Which of the following are characteristic features of normal weight central obesity (NWCO)? Mark all correct answers.

    1. (a)

      Low waist to hip ratio

    2. (b)

      High waist circumference

    3. (c)

      Normal weight

    4. (d)

      Increased visceral fat

  5. 5.

    Which of the following may be associated with increased risk of unhealthy lean?

    1. (a)

      Aging

    2. (b)

      Ethnicity

    3. (c)

      Low physical activity

    4. (d)

      All of the above

Answers

  1. 1.

    d

  2. 2.

    d

  3. 3.

    a, c

  4. 4.

    b, c, d

  5. 5.

    d

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wijayatunga, N.N., Fernandez-del-Valle, M. (2023). Not So Normal Unhealthy Lean. In: Robert-McComb, J.J., Zumwalt, M., Fernandez-del-Valle, M. (eds) The Active Female. Springer, Cham. https://doi.org/10.1007/978-3-031-15485-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15485-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15484-3

  • Online ISBN: 978-3-031-15485-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics