Skip to main content

Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

Abstract

This survey analyses and compares ten different robots capable of hybrid locomotion in an attempt to elucidate the readers on several aspects of importance when designing and implementing a legged-wheeled vehicle. With this purpose in mind, the robots are compared based on their goals, kinematic configurations, joint specifications and overall performance. In this text, their variety and versatility is presented, justifying their use in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutter, M., et al.: Anymal-toward legged robots for harsh environments. Adv. Robot. 31(17), 918–931 (2017)

    Article  Google Scholar 

  2. Schwarz, M., et al.: Nimbro rescue: solving disaster-response tasks with the mobile manipulation robot momaro. J. Field Robot. 34(2), 400–425 (2017)

    Article  Google Scholar 

  3. Kashiri, N., et al.: Centauro: a hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 4(2), 1595–1602 (2019)

    Article  Google Scholar 

  4. Klemm, V., et al.: Ascento: A two-wheeled jumping robot. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7515–7521. IEEE (2019)

    Google Scholar 

  5. Eich, M., Grimminger, F., Kirchner, F.: A versatile stair-climbing robot for search and rescue applications. In: 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 35–40. IEEE (2008)

    Google Scholar 

  6. Cordes, F., Kirchner, F., Babu, A.: Design and field testing of a rover with an actively articulated suspension system in a mars analog terrain. J. Field Robot. 35(7), 1149–1181 (2018)

    Article  Google Scholar 

  7. Reid, W., Pérez-Grau, F.J., Göktoğan, A.H., Sukkarieh, S.: Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5596–5602. IEEE (2016)

    Google Scholar 

  8. Bruzzone, L., Quaglia, G.: Locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 3(2), 49–62 (2012)

    Article  Google Scholar 

  9. Bjelonic, M., Bellicoso, C.D., Tiryaki, M.E., Hutter, M.: Skating with a force controlled quadrupedal robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7555–7561. IEEE (2018)

    Google Scholar 

  10. Lu, D., Dong, E., Liu, C., Xu, M., Yang, J.: Design and development of a leg-wheel hybrid robot “HyTRO-I”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6031–6036. IEEE (2013)

    Google Scholar 

  11. Lacagnina, M., Muscato, G., Sinatra, R.: Kinematics, dynamics and control of a hybrid robot wheeleg. Robot. Auton. Syst. 45(3–4), 161–180 (2003)

    Article  Google Scholar 

  12. Chen, S.-C., Huang, K.-J., Chen, W.-H., Shen, S.-Y., Li, C.-H., Lin, P.-C.: Quattroped: a leg-wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2013)

    Article  Google Scholar 

  13. Kim, Y.-S., Jung, G.-P., Kim, H., Cho, K.-J., Chu, C.-N.: Wheel transformer: a wheel-leg hybrid robot with passive transformable wheels. IEEE Trans. Robot. 30(6), 1487–1498 (2014)

    Article  Google Scholar 

  14. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  15. Pinto, V.H., Soares, I.N., Rocha, M., Lima, J., Gonçalves, J., Costa, P.: Design, modeling, and control of an autonomous legged-wheeled hybrid robotic vehicle with non-rigid joints. Appl. Sci. 11(13), 6116 (2021)

    Article  Google Scholar 

  16. Bouton, A., Grand, C., Benamar, F.: Design and control of a compliant wheel-on-leg rover which conforms to uneven terrain. IEEE/ASME Trans. Mechatron. 25(5), 2354–2363 (2020)

    Article  Google Scholar 

  17. Tedeschi, F., Carbone, G.: Design of a novel leg-wheel hexapod walking robot. Robotics 6(4), 40 (2017)

    Article  Google Scholar 

  18. Chen, Z., et al.: Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. 108, 367–380 (2021)

    Article  Google Scholar 

  19. Pinto, V.H., Gonçalves, J., Costa, P.: Design, modeling, and control of a single leg for a legged-wheeled locomotion system with non-rigid joint. In: Actuators, vol. 10, p. 29. Multidisciplinary Digital Publishing Institute (2021)

    Google Scholar 

  20. Kashiri, N., Ajoudani, A., Caldwell, D.G., Tsagarakis, N.G.: Evaluation of hip kinematics influence on the performance of a quadrupedal robot leg. ICINCO 1, 205–212 (2016)

    Google Scholar 

  21. Bjelonic, M., et al.: Keep rollin’-whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robot. Autom. Lett. 4(2), 2116–2123 (2019)

    Article  Google Scholar 

  22. Anymal - autonomous legged robot - anybotics. https://www.anybotics.com/anymal-autonomous-legged-robot/#specs. Accessed 27 April 2022

  23. Orozco-Magdaleno, E.C., Gómez-Bravo, F., Castillo-Castañeda, E., Carbone, G.: Evaluation of locomotion performances for a mecanum-wheeled hybrid hexapod robot. IEEE/ASME Trans. Mechatron. 26(3), 1657–1667 (2020)

    Article  Google Scholar 

  24. Anydrive. https://echord.eu/public/wp-content/uploads/2018/01/D3.3-Integrated-Electronics-MODUL.pdf. Accessed 28 April 2022

  25. H54-200-S500-R. https://emanual.robotis.com/docs/en/dxl/pro/h54-200-s500-r/. Accessed 28 April 2022

  26. H54-100-S500-R.https://emanual.robotis.com/docs/en/dxl/pro/h54-100-s500-r/. Accessed 28 April 2022

  27. H42-20-S300-R. https://emanual.robotis.com/docs/en/dxl/pro/h42-20-s300-r/. Accessed 28 April 2022

  28. Pinto, V.H., Gonçalves, J., Costa, P.: Towards a more robust non-rigid robotic joint. Appl. Syst. Innov. 3(4), 45 (2020)

    Article  Google Scholar 

  29. DS RDS3115MG. https://alexnld.com/product/ds-rds3115mg-15kg-large-torque-180-degree-biaxial-digital-servo-for-rc-robot/. Accessed 28 April 2022

Download references

Acknowledgment

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020 and Project Warehouse of the Future (WoF), with reference POCI-01-0247-FEDER-072638, co-funded by FEDER, through COMPETE 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreira, J., Soares, I.N., Lima, J., Pinto, V.H., Costa, P. (2023). Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_16

Download citation

Publish with us

Policies and ethics