Skip to main content

Domoic Acid as a Neurotoxin

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Domoic acid (DOM) is a naturally occurring excitatory amino acid with structural similarity, and similar but not identical pharmacological profile, to kainic acid. DOM is most commonly associated with toxic blooms of marine phytoplankton resulting in contamination of shellfish as well as other species. This brief chapter summarizes the known toxicological properties of DOM both in vitro and in vivo in a variety of model systems. The chapter also summarizes information on clinical cases of intoxication in both wildlife and humans and highlights the growing evidence that DOM is a potent neurodevelopmental toxin with relevance to both food safety issues and the etiology of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPA/KA:

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate

AMPA-R:

AMPA receptor

CA:

cornu ammonis

CGC:

cerebellar granule cell

CNS:

central nervous system

CSF:

cerebrospinal fluid

DOM:

domoic acid

EAA:

excitatory amino acid

EC50:

50% effective concentration

ED50:

50% effective dose

GABA:

Gamma aminobutyric acid

GFAP:

glial fibrillary acidic protein

GI:

gastrointestinal

GluK:

kainate receptor subunit

GluR:

glutamate receptor

HPLC:

high performance liquid chromatography

JNK:

Jun-N-terminal kinase

KA:

kainic acid

KA-R:

kainate receptor

MEK:

mitogen-activated protein kinase

mRNA:

messenger ribonucleic acid

NMDA:

N-methyl-d-aspartate

PKA:

Protein kinase A

SD:

Sprague-Dawley

TrkB:

Tropomyosin receptor kinase B

VSCC:

voltage-gated calcium channel

References

  • Ananth, C., Dheen, S. T., Gopalakrishnakone, P., & Kaur, C. (2001). Domoic acid-induced neuronal damage in the rat hippocampus: Changes in apoptosis related genes (Bcl-2, Bax, Caspase-3) and microglial response. Journal of Neuroscience Research, 66, 177–190.

    Article  Google Scholar 

  • Bakke, M. J., Hustoft, H. K., & Horsberg, T. E. (2010). Subclinical effects of saxitoxin and domoic acid on aggressive behaviour and monoaminergic turnover in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 99, 1–9.

    Article  Google Scholar 

  • Bates, S. S., & Trainer, V. L. (2006). The ecology of harmful diatoms. In E. Granéli & J. Turner (Eds.), Ecology of harmful algae. Ecological studies (Vol. 189, pp. 81–93). Springer.

    Chapter  Google Scholar 

  • Bates, S. S., Hubbard, K. A., Lundholm, N., Montresor, M., & Leaw, C. P. (2018). Pseudo-nitzschia, Nitzschia, and domoic acid. New research since 2011. Harmful Algae, 79, 3–43.

    Article  Google Scholar 

  • Beani, L., Bianchi, C., Guerrini, F., Marani, L., Pistocchi, R., Tomasini, M. C., Ceredi, A., Milandri, A., Poletti, R., & Boni, L. (2000). High sensitivity bioassay of paralytic (PSP) and amnesic (ASP) algal toxins based on the fluorimetric detection of [Ca(2+)](i) in rat cortical primary cultures. Toxicon, 38, 1283–1297.

    Article  Google Scholar 

  • Bengtson-Nash, S. M., Baddock, M. C., Takahashi, E., Dawson, A., & Cropp, R. (2017). Domoic acid poisoning as a possible cause of seasonal cetacean mass stranding events in Tasmania, Australia. Bulletin of Environmental Contamination and Toxicology, 98, 8–13.

    Article  Google Scholar 

  • Berman, F. W., & Murray, T. F. (1997). Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. Journal of Neurochemistry, 69, 693–703.

    Article  Google Scholar 

  • Berman, F. W., LePage, K. T., & Murray, T. F. (2002). Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca(2+) influx pathway. Brain Research, 924, 20–29.

    Article  Google Scholar 

  • Bernard, P. B., Ramsay, L. A., MacDonald, D. S., & Tasker, R. A. (2017). Progressive changes in hippocampal cytoarchitecture in a neurodevelopmental rat model of epilepsy: Implications for understanding presymptomatic epileptogenesis, predictive diagnosis and targeted treatments. EPMA Journal, 8, 247–254.

    Article  Google Scholar 

  • Bose, R., Pinsky, C., & Glavin, G. B. (1990). Sensitive murine model and putative antidotes for behavioral toxicosis from contaminated mussel extracts. Canada Diseases Weekly Report, 16(Suppl 1E), 91–100.

    Google Scholar 

  • Buckmaster, P. S., Wen, X., Toyoda, I., Gulland, F. M. D., & Van Bonn, W. (2014). Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus). Journal of Comparative Neurology, 522, 1691–1706.

    Article  Google Scholar 

  • Canete, E., & Diogene, J. (2008). Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastomaxglioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon, 52, 541–550.

    Article  Google Scholar 

  • Cendes, F., Andermann, F., Carpenter, S., Zatorre, R. J., & Cashman, N. R. (1995). Temporal lobe epilepsy caused by domoic acid intoxication: Evidence for glutamate receptor-mediated excitotoxicity in humans. Annals of Neurology, 37, 123–126.

    Article  Google Scholar 

  • Cook, P. F., Berns, G. S., Colegrove, K., Johnson, S., & Gulland, F. (2018). Postmortem DTI reveals altered hippocampal connectivity in wild sea lions diagnosed with chronic toxicosis from algal exposure. Journal of Comparative Neurology, 526, 216–228.

    Article  Google Scholar 

  • Costa, L. G., Giordano, G., & Faustman, E. M. (2010). Domoic acid as a developmental neurotoxin. Neurotoxicology, 31, 409–423.

    Article  Google Scholar 

  • Cunha, R. A., Constantino, M. D., & Ribeiro, J. A. (1997). Inhibition of [3H]g -aminobutyric acid release by kainate receptor activation in rat hippocampal synaptosomes. European Journal of Pharmacology, 323, 167–172.

    Article  Google Scholar 

  • Dakshimamurti, K., Sharma, S. K., Sundaram, M., & Wantanabe, T. (1993). Hippocampal changes in developing postnatal mice following intrauterine exposure to domoic acid. Journal of Neuroscience, 13, 4486–4495.

    Article  Google Scholar 

  • Diaz-Trelles, R., Novelli, A., & Fernandez-Sanchez, M. T. (2003). RNA synthesis-dependent potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediated toxicity by antihistamine terfenadine in cultured rat cerebellar neurons. Neuroscience Letters, 345, 136–140.

    Article  Google Scholar 

  • Dobbing, J., & Smart, J. L. (1974). Vulnerability of developing brain and behaviour. British Medical Bulletin, 30, 164–168.

    Article  Google Scholar 

  • Doucette, T. A., & Tasker, R. A. (2008). Domoic acid: Detection methods, pharmacology and toxicology. In L. M. Botano (Ed.), Seafood and freshwater toxins: Pharmacology, physiology and detection (pp. 397–430). CRC Press.

    Google Scholar 

  • Doucette, T. A., & Tasker, R. A. (2016). Perinatal domoic acid as a neuroteratogen. Curremt Topics in Behavioral Neuroscience, 29, 87–110.

    Article  Google Scholar 

  • Doucette, T. A., Strain, S. M., Allen, G. V., Ryan, C. L., & Tasker, R. A. R. (2000). Comparative behavioural toxicity of domoic acid and kainic acid in neonatal rats. Neurotoxicology & Teratology, 22, 863–869.

    Article  Google Scholar 

  • Doucette, T. A., Bernard, P. B., Yuill, P. C., Tasker, R. A., & Ryan, C. L. (2003). Low doses of non-NMDA glutamate receptor agonists alter neurobehavioural development in the rat. Neurotoxicology & Teratology, 25, 473–479.

    Article  Google Scholar 

  • Doucette, T. A., Bernard, P. B., Husum, H., Perry, M. A., Ryan, C. L., & Tasker, R. A. (2004). Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotoxicity Research, 6, 555–563.

    Article  Google Scholar 

  • Evans, A. J., Gurang, S., Henley, J. M., Nakamura, Y., & Wilkinson, K. A. (2019). Exciting times: New advances towards understanding the regulation and roles of kainate receptors. Neurochemical Research, 44, 572–584.

    Article  Google Scholar 

  • Funk, J. A., Janech, M. G., Dillon, J. C., Bissler, J. J., Siroky, B. J., & Bell, P. D. (2014). Characterization of renal toxicity in mice administered the marine biotoxin domoic acid. Journal of the American Society of Nephrology, 25, 1187–1197.

    Article  Google Scholar 

  • Gill, S. S., & Pulido, O. M. (2001). Glutamate receptors in peripheral tissues: Current knowledge, future research, and implications for toxicology. Toxicologic Pathology, 29, 208–223.

    Article  Google Scholar 

  • Gill, S. S., Hou, Y., Ghane, T., & Pulido, O. M. (2008). Regional susceptibility to domoic acid in primary astrocyte cells cultured from the brain stem and hippocampus. Marine Drugs, 6, 25–38.

    Article  Google Scholar 

  • Giordano, G., White, C. C., McConnachie, L. A., Fernandez, C., Kavanagh, T. J., & Costa, L. G. (2006). Neurotoxicity of domoic acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Molecular Pharmacology, 70, 2116–2126.

    Article  Google Scholar 

  • Giordano, G., White, C. C., Mohar, I., Kavanagh, T. J., & Costa, L. G. (2007). Glutathione levels modulate domoic acid induced apoptosis in mouse cerebellar granule cells. Toxicological Sciences, 100, 433–444.

    Article  Google Scholar 

  • Giordano, G., Klintworth, H. M., Kavanaugh, T. J., & Costa, L. G. (2008). Apoptosis induced by domoic acid in mouse cerebellar granule neurons involves activation of p38 and JNK MAP kinases. Neurochemistry International, 52, 1100–1105.

    Article  Google Scholar 

  • Giordano, G., Li, L., White, C. C., Farin, F. M., Wilkerson, H. W., Kavanagh, T. J., & Costa, L. G. (2009). Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. Journal of Neurochemistry, 109, 525–538.

    Article  Google Scholar 

  • Giordano, G., Kavanagh, T. J., Faustman, E. M., White, C. C., & Costa, L. G. (2013). Low-level domoic acid protects mouse cerebellar granule neurons from acute neurotoxicity: Role of glutathione. Toxicological Sciences, 132, 399–408.

    Article  Google Scholar 

  • Gjedde, A., & Evens, A. C. (1990). PET studies of domoic acid poisoning in humans: Excitotoxic destruction of brain glutamatergic pathways, revealed in measurements of glucose metabolism by positron emission tomography. Canada Diseases Weekly Report, 16(Suppl 1E), 105–109.

    Google Scholar 

  • Glavin, G., Pinsky, C., & Bose, R. (1989). Toxicology of mussels contaminated by neuroexcitant domoic acid. Lancet, 1(8636), 506–507.

    Article  Google Scholar 

  • Glavin, G. B., Pinsky, C., & Bose, R. (1990). Domoic acid-induced neurovisceral toxic syndrome: Characterization of an animal model and putative antidotes. Brain Research Bulletin, 24, 701–703.

    Article  Google Scholar 

  • Grant, K. S., Crouthamel, B., Kenney, C., McKain, N., Petroff, R., Shum, S., Jing, J., Isoherranen, N., & Burbacher, T. M. (2019). Preclinical modeling of exposure to a global marine bio-containment: Effects of in utero domoic acid exposure on neonatal behavior and infant memory. Neurotoxicology & Teratology, 73, 1–8.

    Article  Google Scholar 

  • Grattan, L. M., Boushey, C., Tracy, K., Trainer, V. L., Roberts, S. M., Scluterman, N., & Morris, J. G., Jr. (2016). The association between razor clam consumption and memory in the CoASTAL cohort. Harmful Algae, 57, 20–25.

    Article  Google Scholar 

  • Grattan, L. M., Boushey, C. J., Liang, Y., Lefebvre, K. A., Castellon, L. J., Roberts, K. A., Toben, A. C., & Norris, J. G., Jr. (2018). Repeated dietary exposure to low levels of domoic acid and problems with everyday memory: Research to public health outreach. Toxins, 10, 103.

    Article  Google Scholar 

  • Gulland, F. M., Hall, A. J., Greig, D. J., Frame, E. R., Colegrove, K. M., Booth, R. K., Wasser, S. K., & Scott-Moncrieff, J. C. (2012). Evaluation of circulating eosinophil count and adrenal gland function in California sea lions naturally exposed to domoic acid. Journal of the American Veterinary Medical Association, 241, 943–949.

    Article  Google Scholar 

  • Hampson, D. R., Huang, X., Wells, J. W., Walter, J. A., & Wright, J. L. C. (1992). Interaction of domoic acid and several derivatives with kainic acid and AMPA binding sites in rat brain. European Journal of Pharmacology, 218, 1–8.

    Article  Google Scholar 

  • Hesp, B. R., Clarkson, A. N., Sawant, P. M., & Kerr, D. S. (2007). Domoic acid preconditioning and seizure induction in young and aged rats. Epilepsy Research, 76, 103–112.

    Article  Google Scholar 

  • Hogberg, H. T., & Bal-Price, A. K. (2011). Domoic acid-induced neurotoxicity is mainly mediated by the AMPA/KA receptor: Comparison between immature and mature primary cultures of neurons and glial cells from rat cerebellum. Journal of Toxicology, 2011, 543512.

    Article  Google Scholar 

  • Hogberg, H. T., Sobanski, T., Novellino, A., Whelan, M., Weiss, D. G., & Bal-Price, A. K. (2011). Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: Evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology, 32, 158–168.

    Article  Google Scholar 

  • Hong, Z., Zhang, Y., Zuo, Z., Zhu, R., & Gao, Y. (2015). Influences of domoic acid exposure on cardiac development and the expression of cardiovascular relative genes in zebrafish (Daniorerio) embryos. Journal of Biochemical and Molecular Toxcology, 29, 254–260.

    Article  Google Scholar 

  • Iverson, F., Truelove, J., Tryphonas, L., & Nera, E. A. (1990). The toxicology of domoic acid administered systematically to rodents and primates. Canada Diseases Weekly Report, 16(Suppl 1E), 15–19.

    Google Scholar 

  • Jakobsen, B., Tasker, A., & Zimmer, J. (2002). Domoic acid neurotoxicity in hippocampal slice cultures. Amino Acids, 23, 37–44.

    Article  Google Scholar 

  • Jeffery, B., Barlow, T., Moizer, K., Paul, S., & Boyle, C. (2004). Amnesic shellfish poison. Food and Chemical Toxicology, 42, 545–557.

    Article  Google Scholar 

  • Jensen, J. B., Schousboe, A., & Pickering, D. S. (1999). Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures. Journal of Neuroscience Research, 55, 208–217.

    Article  Google Scholar 

  • Jing, J., Petroff, R., Shum, S., Crouthamel, B., Topletz, A. R., Grant, K. S., Burbacher, T. M., & Isoherranen, N. (2018). Toxicokinetics and physiologically based pharmacokinetic modeling of the shellfish toxin domoic acid in nonhuman primates. Drug Metabolism and Disposition, 46, 155–165.

    Article  Google Scholar 

  • Keogh, M. J., Gastaldi, A., Charapata, P., Melin, S., & Fadely, B. S. (2020). Stress-related and reproductive hormones in hair from three north Pacific otariid species: Steller sea lions, California sea lions and northern fur seals. Conservation Physiology, 8, coaa069. https://doi.org/10.1093/conphys/coaa069

    Article  Google Scholar 

  • Kirkley, K. S., Madl, J. E., Duncan, C., Gulland, F. M., & Tjalkens, R. B. (2014). Domoic acid-induced seizures in California Sea lions (Zalophus californianus) are associated with neuroinflammatory brain injury. Aquatic Toxicology, 156, 259–268.

    Article  Google Scholar 

  • Kosenkov, A. M., Teplov, I. Y., Sergeev, A. I., Maiorov, S. A., Zinchenko, V. P., & Gaidan, S. G. (2019). Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons. Archives of Biochemistry and Biophysics, 671, 52–61.

    Article  Google Scholar 

  • Larm, J. A., Beart, P. M., & Cheung, N. S. (1997). Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurones. Neurochemistry International, 31, 677–682.

    Article  Google Scholar 

  • Lefebvre, K. A., Quakenbush, L., Frame, E., Huntington, K. B., Sheffield, G., Stimmelmayr, R., Bryan, A., Kendrick, P., Ziel, H., Goldstein, T., Snyder, J. A., Gelatt, T., Gulland, F., Dickerson, B., & Gill, V. (2016). Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae, 55, 13–24.

    Article  Google Scholar 

  • Lefebvre, K. A., Kendrick, P. S., Ladiges, W., Hiolski, E. M., Ferriss, B. E., Smith, D. R., & Marcinek, D. J. (2017). Chronic low-level exposure to the common seafood toxin domoic acid causes cognitive deficits in mice. Harmful Algae, 64, 20–29.

    Article  Google Scholar 

  • Lester, D. S., Lyon, R. C., McGregor, G. N., Engelhardt, R. T., Schmued, L. C., Johnson, G. A., & Johannessen, J. N. (1999). 3-dimensional visualization of lesions in rat brain using magnetic resonance imaging microscopy. Neuroreport, 10, 737–741.

    Article  Google Scholar 

  • Levin, E. D., Pizarro, K., Pang, W. G., Harrison, J., & Ramsdell, J. S. (2005). Persisting behavioral consequences of prenatal domoic acid exposure in rats. Neurotoxicology & Teratology, 27, 719–725.

    Article  Google Scholar 

  • Liu, L. L., Li, L., Chen, D., & Liu, Y. S. (2008). Effects of domoic acid on membrane function of primary cultured rat glial cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 26, 725–728.

    Google Scholar 

  • Lu, J., Zheng, Y. L., Hu, B., Cheng, W., & Zhang, Z. F. (2012). Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-alpha-mediated mitochondrial biogenesis signaling in mice. Free Radical Biology and Medicine, 52, 646–659.

    Article  Google Scholar 

  • Maeda, M., Kodama, T., Tanaka, T., Yoshizumi, H., Takemoto, T., Nomoto, K., & Fujita, T. (1986). Structures of isodomoic acids A, B and C, novel insecticidal amino acids from the red alga Chondria armata. Chemical Pharmaceutical Bulletin, 34, 4892–4895.

    Article  Google Scholar 

  • Maeno, Y., Kotaki, Y., Terada, R., Cho, Y., Konoki, K., & Yotsu-Yamashita, M. (2018). Siox domoic acid related compounds for the red alga, Chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-nitzschia multiseries. Scientific Reports, 8, 356.

    Article  Google Scholar 

  • Marriott, A. L., Rojas-Mancilla, E., Morales, P., Herrera-Marschitz, M., & Tasker, R. A. (2017). Models of progressive neurological dysfunction originating early in life. Progress in Neurobiology, 155, 2–20.

    Article  Google Scholar 

  • Maucher, J. M., & Ramsdell, J. S. (2007). Maternal-fetal transfer of domoic acid in rats at two gestational time points. Environmental Health Perspectives, 115, 1743–1746.

    Article  Google Scholar 

  • Maucher-Fuquay, J., Muha, N., Wang, Z., & Ramsdell, J. S. (2012a). Elimination kinetics of domoic acid from the brain and cerebrospinal fluid of the pregnant rat. Chemical Research in Toxicology, 25, 2805–2809.

    Article  Google Scholar 

  • Maucher-Fuquay, J., Muha, N., Wang, Z., & Ramsdell, J. S. (2012b). Toxicokinetics of domoic acid in the fetal rat. Toxicology, 294, 36–41.

    Article  Google Scholar 

  • Mayer, A. M., Hall, M., Fay, M. J., Lamar, P., Pearson, C., Prozialeck, W. C., Lehmann, V. K., Jacobson, P. B., Romanic, A. M., Uz, T., & Manev, H. (2001). Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia. BMC Pharmacology, 1, 7.

    Article  Google Scholar 

  • Mayer, A. M., Guzman, M., Peksa, R., Hall, M., Fay, M. J., Jacobson, P. B., Romanic, A. M., & Gunasekera, S. P. (2007). Differential effects of domoic acid and E. coli lipopolysaccharide on tumor necrosis factor-alpha, transforming growth factor-beta1 and matrix metalloproteinase-9 release by rat neonatal microglia: evaluation of the direct activation hypothesis. Marine Drugs, 5, 113–135.

    Article  Google Scholar 

  • Mills, B., Pearce, H. L., Khan, O., Jarrett, B. R., Fair, D. A., & Lahvis, G. P. (2016). Prenatal domoic acid exposure disrupts mouse pro-social behavior and functional connectivity MRI. Behavioural Brain Research, 308, 14–23.

    Article  Google Scholar 

  • Munday, R., Holland, P. T., McNabb, P., Selwood, A. I., & Rhodes, L. L. (2008). Comparative toxicity to mice of domoic acid and isodomoic acids A,B and C. Toxicon, 52, 954–956.

    Article  Google Scholar 

  • Nakajima, S., & Potvin, J. L. (1992). Neural and behavioural effects of domoic acid, an amnesic shellfish toxin, in the rat. Canadian Journal of Psychology, 46, 569–581.

    Article  Google Scholar 

  • Nduaka, C. I., Taylor, R. E., Green, S., Flynn, T., Sathyamoorthy, V. V., Sprando, R. L., & Johannessen, J. N. (1999). Glutamate release from chick retina explants in response to domoic acid. In Vitro Molecular Toxicology, 12, 173–182.

    Google Scholar 

  • Noqueira, I., Lobo-da-Cunha, A., Afonso, A., Rivera, S., Azevedo, J., Monteiro, R., Cervantes, R., Gago-Martinez, A., & Vasconcelos, V. (2010). Toxic effects of domoic acid in the seabream Sparus aurata. Marine Drugs, 8, 2721–2732.

    Article  Google Scholar 

  • Novelli, A., Kispert, J., Fernandez-Sanchez, M. T., Torreblanca, A., & Zitko, V. (1992). Domoic acid-containing toxic mussels produce neurotoxicity in neuronal cultures through a synergism between excitatory amino acids. Brain Research, 577, 41–48.

    Article  Google Scholar 

  • Peng, Y. G., Clayton, E. C., & Ramsdell, J. S. (1997). Repeated independent exposures to domoic acid do not enhance symptomatic toxicity in outbred or seizure-sensitive inbred mice. Toxicological Sciences, 40, 63–67.

    Article  Google Scholar 

  • Perez-Gomez, A., & Tasker, R. A. (2012). Enhanced neurogenesis in organotypic cultures of rat hippocampus after transient subfield-selective excitotoxic insult induced by domoic acid. Neuroscience, 208, 97–108.

    Article  Google Scholar 

  • Perez-Gomez, A., & Tasker, R. A. (2013). Transient domoic acid excitotoxicity increases BDNF expression and activates both MEK- and PKA-dependent neurogenesis in organotypic hippocampal slices. BMC Neuroscience, 14, 72.

    Article  Google Scholar 

  • Perez-Gomez, A., & Tasker, R. A. (2014). Enhanced mossy fiber sprouting and synapse formation in organotypic hippocampal cultures following transient domoic acid excitotoxicity. Neurotoxicity Research, 25, 402–410.

    Article  Google Scholar 

  • Perez-Gomez, A., Novelli, A., & Fernandez-Sanchez, M. T. (2010). Na+/K+-ATPase inhibitor palytoxin enhances vulnerability of cultured cerebellar neurons to domoic acid via sodium-dependent mechanisms. Journal of Neurochemistry, 114, 28–38.

    Google Scholar 

  • Pérez-Gómez, A., Cabrera-García, D., Warm, D., Marini, A. M., Salas Puig, J., Fernández-Sánchez, M. T., & Novelli, A. (2018). Selective enhancement of domoic acid toxicity in primary cultures of cerebellar granule cells by lowering extracellular Na+ concentration. Toxicological Sciences, 161, 103–114.

    Google Scholar 

  • Perl, T. M., Bédard, L., Kosatsky, T., Hockin, J. C., Todd, E. C. D., & Remis, R. S. (1990). An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New England Journal of Medicine, 322, 1775–1780.

    Article  Google Scholar 

  • Preston, E., & Hynie, I. (1991). Transfer constants for blood-brain barrier permeation of the neuroexcitatory shellfish toxin, domoic acid. Canadian Journal of Neurology, 18, 39–44.

    Article  Google Scholar 

  • Pulido, O. M. (2008). Domoic acid toxicologic pathology: A review. Marine Drugs, 6, 180–219.

    Article  Google Scholar 

  • Qiu, S., Pak, C. W., & Curras-Collazo, M. C. (2006). Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: Effect of multiple dose/duration paradigms, chronological age, and repeated exposure. Toxicological Sciences, 89, 243–256.

    Article  Google Scholar 

  • Quilliam, M. A. (2003). Chemical methods for domoic acid, the amnesic shellfish poisoning (ASP) toxin (Chapter 9). In G. M. Hallegraeff, D. M. Anderson, & A. D. Cembella (Eds.), Manual on harmful marine microalgae (Vol. 11). Intergovernmental Oceanographic Commission (UNESCO).

    Google Scholar 

  • Raman, M., Chen, W., & Cobb, M. H. (2007). Differential regulation and properties of MAPKs. Oncogene, 26, 3100–3112.

    Article  Google Scholar 

  • Ramsdell, J. S. (2010). Neurological disease rises from ocean to bring model for human epilepsy to life. Toxins (Basel), 2, 1646–1675.

    Article  Google Scholar 

  • Ramsdell, J. S., & Zabka, T. S. (2008). In utero domoic acid toxicity: A fetal basis to adult disease in the California Sea lion (Zalophus californianus). Marine Drugs, 6, 262–290.

    Article  Google Scholar 

  • Robertson, H., Renton, K., Kohn, J., & White, T. (1992). Patterns of Fos expression suggest similar mechanisms of action for the excitotoxins domoic and kainic acid. Annals of the New York Academy of Sciences, 648, 330–334.

    Article  Google Scholar 

  • Rodriquez-Moreno, A., Lopez-Garcia, J., & Lerma, J. (2000). Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proceedings of the National Academy of Sciences, 97, 1293–1298.

    Article  Google Scholar 

  • Ross, I. A., Johnson, W., Sapienza, P. P., & Kim, C. S. (2000). Effects of the seafood toxin domoic acid on glutamate uptake by rat astrocytes. Food and Chemical Toxicology, 38, 1005–1111.

    Article  Google Scholar 

  • Roy, M., & Sapolsky, R. M. (2003). The neuroprotective effects of virally-derived caspase inhibitors p35 and crmA following a necrotic insult. Neurobiology of Disease, 14, 1–9.

    Article  Google Scholar 

  • Rozas, J., Paternain, A. V., & Lerma, J. (2003). Noncanonical signaling by ionotropic kainate receptors. Neuron, 39, 543–553.

    Article  Google Scholar 

  • Rust, L., Gulland, F., Frame, E., & Lefebvre, K. (2014). Domic acid in milk of free living California marine mammals indicates lactation exposure occurs. Marine Mammal Science, 30, 1272–1278.

    Article  Google Scholar 

  • Sawant, P. M., Weare, B. A., Holland, P. T., Selwood, A. I., King, K. L., Mikulski, C. M., Doucette, G. J., Mountfort, D. O., & Kerr, D. S. (2007). Isodomoic acids A and C exhibit low KA receptor affinity and reduced in vitro potency relative to domoic acid in region CA1 of rat hippocampus. Toxicon, 50, 627–638.

    Article  Google Scholar 

  • Sawant, P. M., Holland, P. T., Mountfort, D. O., & Kerr, D. S. (2008). In vivo seizure induction and pharmacological preconditioning by domoic acid and isodomoic acids A, B and C. Neuropharmacology, 55, 1412–1418.

    Article  Google Scholar 

  • Sawant, P. M., Tyndall, J. D. A., Holland, P. T., Peake, B. M., Mountfort, D. O., & Kerr, D. S. (2010). In vivo seizure induction and affinity studies of domoic acid and isodomoic acids D, E and F. Neuropharmacology, 59, 129–138.

    Article  Google Scholar 

  • Scallet, A. C., Binienda, Z., Caputo, F. A., Hall, S., Paule, M. G., Roundtree, R. L., Schmued, L., Sobotka, T., & Slikker, W., Jr. (1993). Domoic acid-treated cynomolgous monkeys (M. fascicularis): Effects of dose on hippocampal neuronal and terminal degeneration. Brain Research, 627, 307–313.

    Article  Google Scholar 

  • Scallet, A. C., Kowalke, P. K., Rountree, R. L., Thorn, B. T., & Binienda, Z. K. (2004). Electroencephalographic, behavioral, and c-fos responses to acute domoic acid exposure. Neurotoxicology & Teratology, 26, 331–342.

    Article  Google Scholar 

  • Shiotani, M., Cole, T. B., Hong, S., Park, J. J. Y., Griffith, W. C., Burbacher, T. M., Workman, T., Costa, L. G., & Faustman, E. M. (2017). Neurobehavioral assessment of mice following repeated oral exposures to domoic acid during prenatal development. Neurotoxicology & Teratology, 64, 8–19.

    Article  Google Scholar 

  • Shum, S., Jing, J., Petroff, R., Crouthamel, B., Grant, K. S., Burbacher, T. M., & Isoherran, N. (2020). Maternal-fetal disposition of domoic acid following repeated oral dosing during pregnance in nonhuman primate. Toxicology and Applied Pharmacology, 398, 115027.

    Article  Google Scholar 

  • Sobotka, T. J., Brown, R., Quander, D. Y., Jackson, R., Smith, M., Long, S. A., Barton, C. N., Rountree, R. L., Hall, S., Eilers, P., Johannessen, J. N., & Scallet, A. C. (1996). Domoic acid: Neurobehavioral and neurohistological effects of low-dose exposure in adult rats. Neurotoxicology & Teratology, 18, 659–670.

    Article  Google Scholar 

  • Stewart, I. (2010). Environmental risk factors for temporal lobe epilepsy – is prenatal exposure to the marine algal neurotoxin domoic acid a potentially preventable cause? Medical Hypotheses, 74, 466–481.

    Article  Google Scholar 

  • Stewart, G. R., Zorumski, C. F., Price, M. T., & Olney, J. W. (1990). Domoic acid: A dementia-inducing excitotoxic food poison with kainic acid receptor specificity. Experimental Neurology, 110, 127–138.

    Article  Google Scholar 

  • Strain, S. M., & Tasker, R. A. R. (1991). Hippocampal damage produced by systemic injections of domoic acid in mice. Neuroscience, 44, 343–352.

    Article  Google Scholar 

  • Sutherland, R. J., Hoesing, J. M., & Whishaw, I. Q. (1990). Domoic acid, an environmental toxin, produces hippocampal damage and severe memory loss. Neuroscience Letters, 120, 221–223.

    Article  Google Scholar 

  • Suzuki, C. A. M., & Hierlihy, S. L. (1993). Renal clearance of domoic acid in the rat. Food and Chemical Toxicology, 31, 701–706.

    Article  Google Scholar 

  • Takemoto, T., & Daigo, K. (1960). Constituents of Chondria armata and their pharmacological effects. Archives of Pharmacology, 293, 627–633.

    Article  Google Scholar 

  • Tanemura, K., Igarashi, K., Matsugami, T. R., Aisaki, K., Kitajima, S., & Kanno, J. (2009). Intrauterine environment-genome interaction and children’s development (2): Brain structure impairment and behavioral disturbance induced in male mice offspring by a single intraperitoneal administration of domoic acid (DA) to their dams. Journal of Toxicological Sciences, 34(Suppl 2), SP279–SP286.

    Article  Google Scholar 

  • Tasker, R. A. (2016). Domoic acid and other amnesic toxins: Toxicological profile. In P. Gopalakrishnakone, V. Haddad Jr., A. Tubaro, E.-K. Kim, & W. R. Kim (Eds.), Handbook of toxinology. Marine and freshwater toxins (pp. 93–112). Springer Science+Business Media.

    Chapter  Google Scholar 

  • Tasker, R. A. R., & Strain, S. M. (1998). Synergism between NMDA and domoic acid in a murine model of behavioural neurotoxicity. Neurotoxicology, 19, 593–598.

    Google Scholar 

  • Tasker, R. A. R., Connell, B. J., & Strain, S. M. (1991). Pharmacology of systemically administered domoic acid in mice. Canadian Journal of Physiology and Pharmacology, 69, 378–382.

    Article  Google Scholar 

  • Tasker, R. A., Strain, S. M., & Drejer, J. (1996). Selective reduction in domoic acid toxicity in vivo by a novel non-N-methyl-d-aspartate antagonist. Canadian Journal of Physiology and Pharmacology, 74, 1047–1054.

    Article  Google Scholar 

  • Tasker, R. A., Kuiper-Goodman, T., Oulido, O., & Lawrence, J. F. (2011). Domoic acid. In J. Lawrence, H. Loreal, H. Toyyofuku, P. Hess, K. Iddya, & L. Ababouch (Eds.), Assessment and management of biotoxin risks in bivalve molluscs (pp. 111–162). Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde, A., & Cashman, N. R. (1990). Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. New England Journal of Medicine, 322, 1781–1787.

    Article  Google Scholar 

  • Todd, E. C. D. (1990). Amnesic shellfish poisoning – a new toxin syndrome. In E. Graneli, B. Sundstrom, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 504–508). Elsevier Science Publishing.

    Google Scholar 

  • Todd, E. C. D. (1993). Domoic acid and amnesic shellfish poisoning – A review. Journal of Food Protection, 56, 69–83.

    Article  Google Scholar 

  • Truelove, J., & Iverson, F. (1994). Serum domoic acid clearance and clinical observations in the Cynomolgus monkey and Sprague-Dawley rat following a single IV dose. Bulletin of Environmental Contamination and Toxicology, 52, 479–486.

    Article  Google Scholar 

  • Tryphonas, L., Truelove, J., & Iverson, F. (1990a). Acute parenteral neurotoxicity of domoic acid in cynomolgus monkeys (M. fascicularis). Toxicologic Pathology, 18, 297–303.

    Article  Google Scholar 

  • Tryphonas, L., Truelove, J., Nera, E., & Iverson, F. (1990b). Acute neurotoxicity of domoic acid in the rat. Toxicologic Pathology, 18, 1–9.

    Article  Google Scholar 

  • Tsunekawa, K., Kondo, F., Okada, T., Feng, G.-G., Huang, L., Ishikawa, N., & Okada, S. (2013). Enhanced expression of WD repeat-containing protein 35 (WDR35) stimulated by domoic acid in rat hippocampus: Involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation. BMC Neuroscience, 14, 4.

    Article  Google Scholar 

  • Twiner, M. J., Fire, S., Schwacke, L., Davidson, L., Wang, Z., Morton, S., Roth, S., Balmer, B., Rowles, T. K., & Wells, R. S. (2011). Concurrent exposure of bottlenose dolphins (Tursiops truncates) to multiple algal toxins in Sarasota bay, Florida, USA. PLoS One, 6, e17394.

    Article  Google Scholar 

  • Vargas, J. R., Takahasi, K., Thomson, K. E., & Wilcox, K. (2013). The expression of kainate receptor subunits in hippocampal astrocytes after experimentally induced status epilepticus. Journal of Neuropathology and Experimental Neurology, 72, 919–932.

    Article  Google Scholar 

  • Verdoorn, T. A., Johansen, T. H., Drejer, J., & Neilsen, E. O. (1994). Selective block of recombinant glur6 receptors by NS-102; a novel non-NMDA receptor antagonist. European Journal of Pharmacology, 269, 43–49.

    Article  Google Scholar 

  • Vieira, A. C., Aleman, N., Cifuentes, J. M., Bermudez, R., Lopez-Pena, M., & Botana, L. M. (2015). Brain pathology in adult rats treated with domoic acid. Veterinary Pathology, 52, 1077–1086.

    Article  Google Scholar 

  • Vieira, A. C., Cifuentes, J. M., Bermudez, R., Ferreiro, S. F., Castro, A. R., & Botano, L. M. (2016). Heart alterations after domoic acid administration in rats. Toxins, 8, 68.

    Article  Google Scholar 

  • Vranyac-Tramoundanas, A., Harrison, J. C., Sawant, P. M., Kerr, D. S., & Sammut, I. A. (2011). Ischemic cardiomyopathy following seizure induction by domoic acid. American Journal of Pathology, 179, 141–154.

    Article  Google Scholar 

  • Walter, J. A., Falk, M., & Wright, J. L. C. (1994). Chemistry of the shellfish toxin domoic acid: Characterization of related compounds. Canadian Journal of Chemistry, 72, 430.

    Article  Google Scholar 

  • Wright, J. L. C., Bird, C. J., deFreitas, A. S. W., Hampson, D., McDonald, J., & Quilliam, M. A. (1990). Chemistry, biology, and toxicology of domoic acid and its isomers. Canada Diseases Weekly Report, 16(Suppl. 1E), 15–18.

    Google Scholar 

  • Xi, D., & Ramsdell, J. S. (1996). Glutamate receptors and calcium entry mechanisms for domoic acid in hippocampal neurons. Neuroreport, 7, 1115–1120.

    Article  Google Scholar 

  • Xi, D., Peng, Y. G., & Ramsdell, J. S. (1997). Domoic acid is a potent neurotoxin to neonatal rats. Natural Toxins, 5, 74–79.

    Article  Google Scholar 

  • Xu, R., Tao, Y., Wu, C., Yi, J., Yang, Y., Yang, R., & Hong, D. (2008). Domoic acid induced spinal cord lesions in adult mice: Evidence for the possible molecular pathways of excitatory amino acids in spinal cord lesions. Neurotoxicology, 29, 700–707.

    Article  Google Scholar 

  • Zaman, L., Arakawa, O., Shimosu, A., Onoue, Y., Nishio, S., Shida, Y., & Noguchi, T. (1997). Two new isomers of domoic acid from a red alga, Chondria armata. Toxicon, 35, 205–212.

    Article  Google Scholar 

  • Zuloaga, D. G., Lahvis, G. P., Mills, B., Pearce, H. L., Turner, J., & Raber, J. (2016). Fetal domoic acid exposure affects lateral amygdala neurons, diminishes social investigation and alters sensory-motor gating. Neurotoxicology, 53, 132–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Andrew Tasker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pérez-Gómez, A., Tasker, R.A. (2022). Domoic Acid as a Neurotoxin. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_87

Download citation

Publish with us

Policies and ethics