Skip to main content

Neurotoxicity: Calpain and 1-Methyl-4-phenylpyridinium (MPP+)

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is commonly utilized in animal models of Parkinson’s disease. This compound is metabolized in the central nervous system to produce 1-methyl-4-phenylpyridinium (MPP+) which interacts with neuronal mitochondria to suppress cellular energy production, generate reactive oxygen species, increase cytosolic calcium levels, and ultimately promote apoptotic cell death. Dopaminergic neurons are critically affected by this mitochondrial dysfunction. Calcium-activated neutral proteinase (calpain) is also pathologically activated by the increased intracellular calcium levels. Hyperactivated calpain cleaves alpha-synuclein into truncated subunits (prone to aggregation) as found in Lewy bodies. Calpain activation following MPTP administration also plays a role in neuroinflammation with T cell activation, cytokine production, and cell signaling pathways. Dopaminergic neuronal apoptosis is also observed in relation to calpain-mediated Bax/Bcl-2 disruption. In addition to mesencephalic neuronal degeneration, these MPP+-induced calpain-mediated effects have also been identified in extranigral neurons such as spinal motoneurons. Thus, derangements in nigral dopamine production and apoptotic neuronal death in other nervous system sites can contribute to the multiple symptoms experienced by Parkinsonian patients. Moreover, administration of calpain inhibitors and anti-inflammatory agents (e.g., estrogen and melatonin) in these animal models demonstrates significant attenuation of neuronal degeneration and resulting Parkinsonian symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

AIF:

Apoptosis inducing factor

Ca2+:

Calcium

Cdk5:

Cyclin-dependent kinase 5

MPP+:

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NOS:

Nitric oxide synthase

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SN:

Substantia nigra

References

  • Aguilar Hernández, R., Sánchez De Las Matas, M. J., Arriagada, C., Barcia, C., Caviedes, P., Herrero, M. T., & Segura-Aguilar, J. (2003). MPP(+)-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity. Neurotoxicity Research, 5, 407–410.

    Article  Google Scholar 

  • Alvira, D., Tajes, M., Verdaguer, E., Acuña-Castroviejo, D., Folch, J., Camins, A., & Pallas, M. (2006). Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. Journal of Pineal Research, 40, 251–258.

    Article  Google Scholar 

  • Arrington, D. D., Van Vleet, T. R., & Schnellmann, R. G. (2006). Calpain 10: A mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. American Journal of Physiology. Cell Physiology, 291, 1159–1171.

    Article  Google Scholar 

  • Banerjee, R., Starkov, A. A., Beal, M. F., & Thomas, B. (2009). Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta, 1792, 651–663.

    Article  Google Scholar 

  • Bano, D., Young, K. W., Guerin, C. J., Lefeuvre, R., Rothwell, N. J., Naldini, L., Rizzuto, R., Carafoli, E., & Nicotera, P. (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell, 120, 275–285.

    Article  Google Scholar 

  • Bevers, M. B., & Neumar, R. W. (2008). Mechanistic role of calpains in postischemic neurodegeneration. Journal of Cerebral Blood Flow and Metabolism, 28, 655–673.

    Article  Google Scholar 

  • Butler, J. T., Samantaray, S., Beeson, C. C., Ray, S. K., & Banik, N. L. (2009). Involvement of Calpain in the process of Jurkat T cell chemotaxis. Journal of Neuroscience Research, 87, 626–635.

    Article  Google Scholar 

  • Chandra, G., Roy, A., Rangasamy, S. B., & Pahan, K. (2017). Induction of adaptive immunity leads to nigrostriatal disease progression in MPTP mouse model of Parkinson’s disease. Journal of Immunology (Baltimore, MD: 1950), 198, 4312–4326.

    Article  Google Scholar 

  • Chera, B., Schaecher, K. E., Rocchini, A., Imam, S. Z., Ray, S. K., Ali, S. F., & Banik, N. L. (2002). Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Annals of the New York Academy of Sciences, 965, 274–280.

    Article  Google Scholar 

  • Choi, W. S., Lee, E. H., Chung, C. W., Jung, Y. K., Jin, B. K., Kim, S. U., Oh, T. H., Saido, T. C., & Oh, Y. J. (2001). Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: Protective role of Bcl-2. Journal of Neurochemistry, 77, 1531–1541.

    Article  Google Scholar 

  • Choi, W. S., Lee, E., Lim, J., & Oh, Y. J. (2008). Calbindin-D28K prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity. Biochemical and Biophysical Research Communications, 371, 127–131.

    Article  Google Scholar 

  • Chu, Y., Morfini, G. A., Langhamer, L. B., He, Y., Brady, S. T., & Kordower, J. H. (2012). Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain, 135, 2058–2073.

    Article  Google Scholar 

  • Cleeter, M. W. J., Cooper, J. M., & Schapira, A. H. V. (1992). Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: Evidence for free radical involvement. Journal of Neurochemistry, 58, 786–789.

    Article  Google Scholar 

  • Domingues, A. F., Esteves, A. R., Swerdlow, R. H., Oliveira, C. R., & Cardoso, S. M. (2008). Calpain-mediated MPP+ toxicity in mitochondrial DNA depleted cells. Neurotoxicity Research, 13, 31–38.

    Article  Google Scholar 

  • Dufty, B. M., Warner, L. R., Hou, S. T., Jiang, S. X., Gomez-Isla, T., Leenhouts, K. M., Oxford, J. T., Feany, M. B., Masliah, E., & Rohn, T. T. (2007). Calpain-cleavage of alpha-synuclein: Connecting proteolytic processing to disease-linked aggregation. The American Journal of Pathology, 170, 1725–1738.

    Article  Google Scholar 

  • Gamerdinger, M., Manthey, D., & Behl, C. (2006). Oestrogen receptor subtype-specific repression of calpain expression and calpain enzymatic activity in neuronal cells – Implications for neuroprotection against Ca-mediated excitotoxicity. Journal of Neurochemistry, 97, 57–68.

    Article  Google Scholar 

  • Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83, 731–801.

    Article  Google Scholar 

  • González, H., Francisco, C., Carolina, P., Daniela, E., Dafne, F., & Sebastián, B. (2013). Rodrigo Pacheco Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol, 190(10), 5048–5056.

    Google Scholar 

  • Guerrero, J. M., & Reiter, R. J. (2002). Melatonin-immune system relationships. Current Topics in Medicinal Chemistry, 2, 167–179.

    Article  Google Scholar 

  • Haque, A., Samantaray, S., Knaryan, V. H., Capone, M., Hossain, A., Matzelle, D., Chandran, R., Shields, D. C., Farrand, A. Q., Boger, H. A., & Banik, N. L. (2020). Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson’s disease. Experimental Neurology, 330, 113315.

    Article  Google Scholar 

  • Harbison, R. A., Ryan, K. R., Wilkins, H. M., Schroeder, E. K., Loucks, F. A., Bouchard, R. J., & Linseman, D. A. (2011). Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons. Neurotoxicity Research, 19, 374–388.

    Article  Google Scholar 

  • Hatcher, J. M., Pennell, K. D., & Miller, G. W. (2008). Parkinson’s disease and pesticides: A toxicological perspective. Trends in Pharmacological Sciences, 29, 322–329.

    Article  Google Scholar 

  • Hof, P. R., Glezer, I. I., Conde, F., Flagg, R. A., Rubin, M. B., Nimchinsky, E. A., & Vogt Weisenhorn, D. M. (1999). Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. Journal of Chemical Neuroanatomy, 16, 77–116.

    Article  Google Scholar 

  • Hsieh, Y. C., Mounsey, R. B., & Teismann, P. (2011). MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress. Naunyn-Schmiedeberg’s Archives of Pharmacology, 384, 157–167.

    Article  Google Scholar 

  • Hwang, J. Y., Lee, J., Oh, C. K., Kang, H. W., Hwang, I. Y., Um, J. W., Park, H. C., Kim, S., Shin, J. H., Park, W. Y., Darnell, R. B., Um, H. D., Chung, K. C., Kim, K., & Oh, Y. J. (2016). Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration. Cell Death & Disease, 7, e2240.

    Article  Google Scholar 

  • Ji, J., Su, L., & Liu, Z. (2016). Critical role of calpain in inflammation. Biomedical Reports, 5, 647–652.

    Article  Google Scholar 

  • Jourdi, H., Hamo, L., Oka, T., Seegan, A., & Baudry, M. (2009). BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices. Neuropharmacology, 56, 876–885.

    Article  Google Scholar 

  • Jung, S., Chung, Y., & Oh, Y. J. (2018). Breaking down autophagy and the ubiquitin proteasome system. Parkinsonism & Related Disorders, 46(Suppl 1), S97–S100.

    Article  Google Scholar 

  • Kanagaraj, N., Beiping, H., Dheen, S. T., & Tay, S. S. (2014). Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 272, 167–179.

    Article  Google Scholar 

  • Kar, P., Samanta, K., Shaikh, S., Chowdhury, A., Chakraborti, T., & Chakraborti, S. (2010). Mitochondrial calpain system: An overview. Archives of Biochemistry and Biophysics, 495, 1–7.

    Article  Google Scholar 

  • Kass, G. E., Wright, J. M., Nicotera, P., & Orrenius, S. (1988). The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: Role of intracellular calcium. Archives of Biochemistry and Biophysics, 260, 789–797.

    Article  Google Scholar 

  • Knaryan, V. H., Samantaray, S., Park, S., Azuma, M., Inoue, J., & Banik, N. L. (2014). SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone. Journal of Neurochemistry, 130, 280–290.

    Article  Google Scholar 

  • Kopil, C. M., Siebert, A. P., Foskett, J. K., & Neumar, R. W. (2012). Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor impairs ER Ca(2+) buffering and causes neurodegeneration in primary cortical neurons. Journal of Neurochemistry, 123, 147–158.

    Article  Google Scholar 

  • Lehtonen, Š., Jaronen, M., Vehviläinen, P., Lakso, M., Rudgalvyte, M., Keksa-Goldsteine, V., Wong, G., Courtney, M. J., Koistinaho, J., & Goldsteins, G. (2016). Inhibition of excessive oxidative protein folding is protective in MPP(+) toxicity-induced Parkinson’s disease models. Antioxidants & Redox Signaling, 25, 485–497.

    Article  Google Scholar 

  • Leist, M., Volbracht, C., Fava, E., & Nicotera, P. (1998). 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Molecular Pharmacology, 54, 789–801.

    Article  Google Scholar 

  • Levesque, S., Wilson, B., Gregoria, V., Thorpe, L. B., Dallas, S., Polikov, V. S., Hong, J. S., & Block, M. L. (2010). Reactive microgliosis: Extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain, 133, 808–821.

    Article  Google Scholar 

  • Li, J., Chen, H., Wu, S., Cheng, Y., Li, Q., Wang, J., & Zhu, G. (2017). MPP+ inhibits mGluR1/5-mediated long-term depression in mouse hippocampus by calpain activation. European Journal of Pharmacology, 795, 22–27.

    Article  Google Scholar 

  • Liou, A. K., Zhou, Z., Pei, W., Lim, T. M., Yin, X. M., & Chen, J. (2005). BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19, 1350–1352.

    Article  Google Scholar 

  • Mandavilli, B. S., Ali, S. F., & Van Houten, B. (2000). DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Research, 885, 45–52.

    Article  Google Scholar 

  • Mizuno, Y., Sone, N., & Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. Journal of Neurochemistry, 48, 1787–1793.

    Article  Google Scholar 

  • Nicholls, D. G., Vesce, S., Kirk, L., & Chalmers, S. (2003). Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium, 34, 407–424.

    Article  Google Scholar 

  • Nicklas, W. J., Youngster, S. K., Kindt, M. V., & Heikkila, R. E. (1987). MPTP, MPP+ and mitochondrial function. Life Sciences, 40, 721–729.

    Article  Google Scholar 

  • Ozaki, T., Tomita, H., Tamai, M., & Ishiguro, S. (2007). Characteristics of mitochondrial calpains. Journal of Biochemistry, 142, 365–376.

    Article  Google Scholar 

  • Pánico, P., Salazar, A. M., Burns, A. L., & Ostrosky-Wegman, P. (2014). Role of calpain-10 in the development of diabetes mellitus and its complications. Archives of Medical Research, 45, 103–115.

    Article  Google Scholar 

  • Parker, W. D., Jr., Parks, J. K., & Swerdlow, R. H. (2008). Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research, 1189, 215–218.

    Article  Google Scholar 

  • Periquet, M., Fulga, T., Myllykangas, L., Schlossmacher, M. G., & Feany, M. B. (2007). Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. The Journal of Neuroscience, 27, 3338–3346.

    Article  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Djaldetti, R., et al. (2000). The parkinsonian toxin MPTP: Action and mechanism. Restorative Neurology and Neuroscience, 16, 135–142.

    Google Scholar 

  • Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Zhang, Y., Callaghan, S., Daigle, M., Rousseaux, M. W., Slack, R. S., Albert, P. R., Vincent, I., Woulfe, J. M., & Park, D. S. (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron, 55, 37–52.

    Article  Google Scholar 

  • Ray, S. K., Wilford, G. G., Ali, S. F., & Banik, N. L. (2000). Calpain upregulation in spinal cords of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease. Annals of the New York Academy of Sciences, 914, 275–283.

    Article  Google Scholar 

  • Samantaray, S., Butler, J. T., Ray, S. K., & Banik, N. L. (2008). Extranigral neurodegeneration in Parkinson’s disease. Annals of the New York Academy of Sciences, 1139, 331–336.

    Article  Google Scholar 

  • Samantaray, S., Knaryan, V. H., Le Gal, C., Ray, S. K., & Banik, N. L. (2011). Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience, 192, 263–274.

    Article  Google Scholar 

  • Samantaray, S., Knaryan, V. H., Shields, D. C., Cox, A. A., Haque, A., & Banik, N. L. (2015). Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Molecular Neurobiology, 52, 1054–1066.

    Article  Google Scholar 

  • Samantaray, S., Knaryan, V. H., M Del Re, A., Woodward, J. J., Shields, D. C., Azuma, M., Inoue, J., Ray, S. K., & Banik, N. L. (2020). Cell-permeable calpain inhibitor SJA6017 provides functional protection to spinal motoneurons exposed to MPP. Neurotoxicity Research, 38, 640–649.

    Article  Google Scholar 

  • Schapira, A. H. V., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., & Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson’s disease. Journal of Neurochemistry, 54, 823–827.

    Article  Google Scholar 

  • Sherer, T. B., Betarbet, R., & Greenamyre, J. T. (2002). Environment, mitochondria, and Parkinson’s disease. The Neuroscientist, 8, 192–197.

    Google Scholar 

  • Shields, D. C., Schaecher, K. E., Saido, T. C., & Banik, N. L. (1999). A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proceedings of the National Academy of Sciences of the United States of America, 96, 11486–11491.

    Article  Google Scholar 

  • Singh, A., Verma, P., Raju, A., & Mohanakumar, K. P. (2019). Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin. Journal of Chemical Neuroanatomy, 95, 89–94.

    Article  Google Scholar 

  • Smith, M. A., & Schnellmann, R. G. (2012). Calpains, mitochondria, and apoptosis. Cardiovascular Research, 96, 32–37.

    Article  Google Scholar 

  • Sun, Y., Sukumaran, P., Selvaraj, S., Cilz, N. I., Schaar, A., Lei, S., & Singh, B. B. (2018). TRPM2 promotes neurotoxin MPP+/MPTP-induced cell death. Molecular Neurobiology, 55, 409–420.

    Article  Google Scholar 

  • Takeshige, K., & Minakami, S. (1979). NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochemical Journal, 180, 129–135.

    Article  Google Scholar 

  • Tanner, C. M. (2003). Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Advances in Neurology, 91, 133–142.

    Google Scholar 

  • Teismann, P., Tieu, K., Choi, D. K., Wu, D. C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V., & Przedborski, S. (2003). Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 100, 5473–5478.

    Article  Google Scholar 

  • Thadathil, N., Xiao, J., Hori, R., Always, S. E., & Khan, M. M. (2020). Brain selective estrogen treatment protects dopaminergic neurons and preserves behavioral function in MPTP-induced mouse model of Parkinson’s disease. Journal of Neuroimmune Pharmacology. https://doi.org/10.1007/s11481-020-09972-1

  • Venderova, K., & Park, D. S. (2012). Programmed cell death in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2, a009365.

    Article  Google Scholar 

  • Vosler, P. S., Brennan, C. S., & Chen, J. (2008). Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Molecular Neurobiology, 38, 78–100.

    Article  Google Scholar 

  • Wales, S. Q., Laing, J. M., Chen, L., & Aurelian, L. (2008). ICP10PK inhibits calpain-dependent release of apoptosis-inducing factor and programmed cell death in response to the toxin MPP+. Gene Therapy, 15, 1397–1409.

    Article  Google Scholar 

  • Warner, T. T., & Schapira, A. H. (2003). Genetic and environmental factors in the cause of Parkinson’s disease. Annals of Neurology, 53, S16–S23.

    Article  Google Scholar 

  • Yildiz-Unal, A., Korulu, S., & Karabay, A. (2015). Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatric Disease and Treatment, 11, 297–310.

    Article  Google Scholar 

  • Zhang, H., Chang, L., Zhang, H., Nie, J., Zhang, Z., Yang, X., Vuong, A. M., Wang, Z., Chen, A., & Niu, Q. (2017). Calpain-2/p35-p25/Cdk5 pathway is involved in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicology Letters, 277, 41–53.

    Article  Google Scholar 

  • Zhu, G., Li, J., He, L., Wang, X., & Hong, X. (2015). MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. British Journal of Pharmacology, 172, 2354–2368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shields, D.C., Haque, A., Banik, N.L. (2022). Neurotoxicity: Calpain and 1-Methyl-4-phenylpyridinium (MPP+). In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_188

Download citation

Publish with us

Policies and ethics