Skip to main content

Morphology and Instability of the Merapi Lava Dome Monitored by Unoccupied Aircraft Systems

  • Chapter
  • First Online:
Merapi Volcano

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

Episodic growth and collapse of the lava dome of Merapi volcano is accompanied by significant hazards associated with material redeposition processes. Some of these hazards are preceded by over-steepening of the flanks of the dome, its destabilisation, fracturing and gravitational collapse, producing lethal pyroclastic density currents. With the emergence of unoccupied aircraft systems (UAS), these changes occurring high up at Merapi can now be monitored at unprecedented levels of detail. Here we summarise the use of UAS at Merapi to better understand the evolution of the lava dome following the 2010 eruption. Systematic UAS overflights and photogrammetric surveys were carried out in 2012, 2015, 2017, 2018 and 2019, allowing identification of the progression of major structures and a three-stage morphological evolution of the dome. We first highlight the significant morphological changes associated with steam-driven explosions that occurred in the period 2012–2014. A large open fissure formed and split the dome into two parts. In the years 2014–2018, hydrothermal activity dominated and progressively altered the dome rock. Lastly, in May–June 2018, a series of steam-driven explosions occurred and was followed by dome extrusion in August 2018, initially refilling the formerly open fissure. This work demonstrates the importance of reactivating pre-existing structures, and summarises the unique contribution realised by high resolution photogrammetric UAS surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashwell PA, Kennedy BM, Edwards M, Cole JW (2018) Characteristics and consequences of lava dome collapse at Ruawahia, Taupo Volcanic Zone, New Zealand. Bull Volcanol 80:43

    Google Scholar 

  • Beauducel F, Cornet FH, Suhanto E, Duquesnoy T, Kasser M (2000) Constraints on magma flux from displacements data at Merapi volcano, Java Indonesia. J Geophys Res Solid Earth 105(B4):8193–8203

    Article  Google Scholar 

  • BPPTKG (2018) Diskusi Scientific forum: Kajian Erupsi Freatik G. Merapi 11 Mei 2018. In: BPPTKG website, Yogyakarta

    Google Scholar 

  • BPPTKG (2019) Laporan Aktivitas Gunung Merapi Tanggal 25–31 Januari 2019. In: BPPTKG website, Yogyakarta

    Google Scholar 

  • Bronto S, Rahardjo W, Asmoro P, Ratdomopurbo A, Adityarani M, Permatasari A (2023) The Godean debris avalanche deposit from a sector collapse of Merapi volcano. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 195–231

    Google Scholar 

  • Calder ES, Lavallée Y, Kendrick JE, Bernstein M (2015) Lava dome eruptions. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn, chap 18. Academic Press, Amsterdam, p 343–362

    Google Scholar 

  • Darmawan H, Walter TR, Richter N, Nikkoo M (2017) High resolution digital elevation model of Merapi summit in 2015 generated by UAVs and TLS. V. 2015. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.003

  • Darmawan H, Walter TR, Brotopuspito KS, Subandriyo NIGMA (2018a) Morphological and structural changes at the Merapi lava dome monitored in 2012–2015 using unmanned aerial vehicles (UAVs). J Volcanol Geotherm Res 349:256–267

    Article  Google Scholar 

  • Darmawan H, Walter TR, Troll VR, Budi-Santoso A (2018b) Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Nat Hazards Earth Syst Sci 18:3267–3281

    Article  Google Scholar 

  • Darmawan H, Mutaqin BW, Wahyudi HA, Wibowo HE, Haerani N, Surmayadi M, Syarifudin S, Asriningrum W (2020a) Topography and structural changes of Anak Krakatau due to the December 2018 catastrophic events. Indones J Geogr 52:402–410

    Article  Google Scholar 

  • Darmawan H, Yuliantoro P, Suryanto W, Rakhman A, Budi Santoso A (2020b) Deformation and instability at Merapi dome identified by high resolution camera. IOP Conf Ser Earth Environ Sci 500:012008

    Article  Google Scholar 

  • Darmawan H, Yuliantoro P, Rakhman A, Budi Santoso A, Humaida H, Suryanto W (2020c) Dynamic velocity and seismic characteristics of gravitational rockfalls at the Merapi lava dome. J Volcanol Geotherm Res 404:107010

    Article  Google Scholar 

  • Darmawan H, Troll VR, Walter TR, Deegan FM, Geiger H, Heap MJ, Seraphine N, Harris C, Humaida H, Müller D (2022) Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones. Sci Rep 12(1):3202. https://doi.org/10.1038/s41598-022-06765-9

  • Derrien A, Peltier A, Villeneuve N, Staudacher T (2020) The 2007 caldera collapse at Piton de la Fournaise: new insights from multi-temporal structure-from-motion. Volcanica 3:55–65

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Nannipieri L, Harris A, Calvari S, Lormand C (2018) UAV-based remote sensing surveys of lava flow fields: a case study from Etna’s 1974 channel-fed lava flows. Bull Volcanol 80:29

    Article  Google Scholar 

  • Gomez C, Kennedy B (2018) Capturing volcanic plumes in 3D with UAV-based photogrammetry at Yasur Volcano—Vanuatu. J Volcanol Geotherm Res 350:84–88

    Article  Google Scholar 

  • Hale AJ (2008) Lava dome growth and evolution with an independently deformable talus. Geophys J Int 174:391–417

    Article  Google Scholar 

  • Harijoko A, Marliyani GI, Wibowo HE, Freski YR, Handini E (2023) The geodynamic setting and geological context of Merapi volcano in Central Java, Indonesia. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 89–109

    Google Scholar 

  • Heap MJ, Troll VR, Kushnir ARL, Gilg HA, Collinson ASD, Deegan FM, Darmawan H, Seraphine N, Neuberg J, Walter TR (2019) Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat Commun 10:5063

    Article  Google Scholar 

  • James M, Carr B, D’Arcy F, Diefenbach A, Dietterich H, Fornaciai A, Lev E, Liu E, Pieri D, Rodgers M, Smets B, Terada A, von Aulock F, Walter T, Wood K, Zorn E (2020) Volcanological applications of unoccupied aircraft systems (UAS): developments, strategies, and future challenges. Volcanica 3:67–114

    Article  Google Scholar 

  • Jordan BR (2019) Collecting field data in volcanic landscapes using small UAS (sUAS)/drones. J Volcanol Geotherm Res 385:231–241

    Article  Google Scholar 

  • Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116:151–160

    Article  Google Scholar 

  • Kelfoun K, Budi-Santoso A, Latchimy T, Bontemps M, Nurdien I, Beauducel F, Fahmi A, Putra R, Dahamna N, Laurin A, Rizal MH, Sukmana JT, Gueugneau V (2021) Growth and collapse of the 2018–2019 lava dome of Merapi volcano. Bull Volcanol 83:8

    Article  Google Scholar 

  • Kennedy BM, Wadsworth FB, Vasseur J, Ian Schipper C, Mark Jellinek A, von Aulock FW, Hess K-U, Kelly Russell J, Lavallée Y, Nichols ARL, Dingwell DB (2016) Surface tension driven processes densify and retain permeability in magma and lava. Earth Planet Sci Lett 433:116–124

    Article  Google Scholar 

  • Kereszturi G, Schaefer LN, Schleiffarth WK, Procter J, Pullanagari RR, Mead S, Kennedy B (2018) Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through image classification. Int J Appl Earth Obs Geoinf 73:323–339

    Google Scholar 

  • Liu EJ, Wood K, Mason E, Edmonds M, Aiuppa A, Giudice G, Bitetto M, Francofonte V, Burrow S, Richardson T, Watson M, Pering TD, Wilkes TC, McGonigle AJS, Velasquez G, Melgarejo C, Bucarey C (2019) Dynamics of outgassing and plume transport revealed by proximal unmanned aerial system (UAS) measurements at Volcán Villarrica, Chile. Geochem Geophys Geosyst 20:730–750

    Article  Google Scholar 

  • Luehr BG, Koulakov I, Suryanto W (2023) Crustal structure and ascent of fluids and melts beneath Merapi: insights from geophysical investigations. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 111–135

    Google Scholar 

  • Malawani MN, Handayani T, Bariq JM, Lukafiardi R (2020) Morphological changes due to anthropogenic interferences in Gendol River Valley, Merapi Volcano. Forum Geogr 33:209–218

    Article  Google Scholar 

  • Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): petrophysical properties and implications for phreatic eruption processes. J Volcanol Geotherm Res 320:128–143

    Article  Google Scholar 

  • McGonigle AJS, Aiuppa A, Giudice G, Tamburello G, Hodson AJ, Gurrieri S (2008) Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys Res Lett 35:L06303

    Article  Google Scholar 

  • Müller D, Walter TR, Schöpa A, Witt T, Steinke B, Gudmundsson MT, Dürig T (2017) High-resolution digital elevation modeling from TLS and UAV campaign reveals structural complexity at the 2014/2015 Holuhraun Eruption Site. Iceland. Front Earth Sci 5:59

    Article  Google Scholar 

  • Müller D, Bredemeyer S, Zorn E, De Paolo E, Walter TR (2021) Surveying fumarole sites and hydrothermal alteration by unoccupied aircraft systems (UAS) at the La Fossa cone, Vulcano Island (Italy). J Volcanol Geotherm Res 413:107208

    Article  Google Scholar 

  • Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993–1994. Geology 23:157–160

    Article  Google Scholar 

  • Nakano T, Kamiya I, Tobita M, Iwahashi J, Nakajima H (2014) Landform monitoring in active volcano by UAV and SFM-MVS technique. Int Arch Photogramm Remote Sens 40:71–75

    Article  Google Scholar 

  • Ohminato T, Kaneko T, Koyama T, Watanabe A, Takeo M, Iguchi M (2011) Upward migration of the explosion sources at Sakurajima volcano, Japan, revield by a seismic network in the close vocinity of the summit crater. AGU Fall Meeting 2011, Abstract ID V41H-07

    Google Scholar 

  • Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566–567:67–86

    Article  Google Scholar 

  • Rhodes E, Kennedy BM, Lavallée Y, Hornby A, Edwards M, Chigna G (2018) Textural insights into the evolving lava dome cycles at Santiaguito lava dome Guatemala. Front Earth Sci 6:30

    Article  Google Scholar 

  • Rokhmana CA, Andaru R (2016) Utilizing UAV-based mapping in post disaster volcano eruption. 6th Insst Ann Eng Sem (InAES):202–205

    Google Scholar 

  • Stix J, de Moor JM (2018) Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Planets Space 70:83

    Article  Google Scholar 

  • Surono JP, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano-A ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135

    Article  Google Scholar 

  • Syahbana DK, Kasbani K, Suantika G, Prambada O, Andreas AS, Saing UB, Kunrat SL, Andreastuti S, Martanto M, Kriswati E, Suparman Y, Humaida H, Ogburn S, Kelly PJ, Wellik J, Wright HMN, Pesicek JD, Wessels R, Kern C, Lisowski M, Diefenbach A, Poland M, Beauducel F, Pallister J, Vaughan RG, Lowenstern JB (2019) The 2017–19 activity at Mount Agung in Bali (Indonesia): intense unrest, monitoring, crisis response, evacuation, and eruption. Sci Rep 9:8848

    Article  Google Scholar 

  • Szeliski R (2010) Computer vision: algorithms and applications, p 979

    Google Scholar 

  • Troll VR, Deegan FM (2023) The magma plumbing system of Merapi: the petrological perspective. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 233–263

    Google Scholar 

  • Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  • Wahyudi SA, Putra H, Darmawan H, Suyanto I, Meilano I, Irzaman EM, Djamal M, Yasin M, Aminah NS, Perdinan AR, Srigutomo W, Suryanto W (2020) Topography changes and thermal distribution at the Kelud crater after the 2014 Plinian eruption. Indones J Geogr 52:411–417

    Article  Google Scholar 

  • Walter TR (2023) Radar sensing of Merapi volcano. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 437–455

    Google Scholar 

  • Walter TR, Salzer J, Varley N, Navarro C, Arámbula-Mendoza R, Vargas-Bracamontes D (2018) Localized and distributed erosion triggered by the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras at Volcán de Colima, Mexico. Geomorphology 319:186–198

    Article  Google Scholar 

  • Walter TR, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Luehr BG, Dahm T (2015) Volcano-tectonic control of Merapi’s lava dome splitting: the November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639:23–33

    Article  Google Scholar 

  • Watson M, Chigna G, Wood K, Richardson T, Liu E, Schellenberg B, Thomas H, Naismith A (2017) On the use of UAVs at active volcanoes: a case study from Volcan de Fuego, Guatemala. AGU Fall Meeting 2017, Abstract ID NH31C-03

    Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufrière hills volcano, Montserrat. Geol Soc Lond Mem 21:115–152

    Article  Google Scholar 

  • Widiyantoro S, Ramdhan M, Metaxian JP, Cummins PR, Martel C, Erdmann S, Nugraha AD, Budi-Santoso A, Laurin A, Fahmi AA (2018) Seismic imaging and petrology explain highly explosive eruptions of Merapi volcano Indonesia. Sci Rep 8:13656

    Article  Google Scholar 

  • Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM, Cant JL (2014) Mechanical and physical properties of hydrothermally altered rocks, Taupo volcanic zone, New Zealand. J Volcanol Geotherm Res 288:76–93

    Article  Google Scholar 

  • Zorn E, Walter T, Johnson BJ, Mania R (2020) UAS-based tracking of the Santiaguito lava dome Guatemala. Sci Rep 10:8644

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate support and suggestions by our colleagues in the office and in the field. We especially thank Professor Kirbani Sri Brotopuspito (✝2019) for his vision and support of unconventional methods early during their development. We will miss him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herlan Darmawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darmawan, H., Putra, R., Budi-Santoso, A., Humaida, H., Walter, T.R. (2023). Morphology and Instability of the Merapi Lava Dome Monitored by Unoccupied Aircraft Systems. In: Gertisser, R., Troll, V.R., Walter, T.R., Nandaka, I.G.M.A., Ratdomopurbo, A. (eds) Merapi Volcano. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-15040-1_15

Download citation

Publish with us

Policies and ethics