Skip to main content

Functionalized Carbon Nanostructures for Wastewater Treatments

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

Pure water is of utmost importance for the human beings. Conversion of wastewater to drinking water become an effective strategy to produce fresh water. Advancements in the field of nanoscience have paved the way to utilize nanostructured materials for the purification of wastewater. Among the various nanomaterials used for the water purification, carbon nanomaterials have attracted great scientific interest in the recent past. The various carbon nanostructures used for the wastewater treatment are graphene, carbon nanotubes, graphene oxide, reduced graphene oxide, etc. These nanostructures exhibit fascinating physicochemical properties such as large surface area to volume ratio, porous architecture, good adsorption/desorption capability, good chemical and electrochemical stabilities, good corrosion resistance, to name a few. The scarcity of pure water and its increasing demand made wastewater treatment technologies flourish in the recent past. There are different types of wastewater treatment technologies that were developed in the recent past such as photocatalysis, adsorption, desalination, etc. This chapter deals with the application of carbon nanostructures for the wastewater treatment by adopting various synthetic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

AgNO3:

Silver nitrate

Al2O3:

Aluminum oxide

ANOVA:

Analysis of variance

BiOCl:

Bismuth oxychloride

C60:

Fullerene

CBC:

Carboxymethyl cellulose

CNTs:

Carbon nanotubes

CQD:

Carbon quantum dot

CuFe2O4:

Copper iron oxide

CuO:

Copper oxide

CVD:

Chemical vapor deposition

DI:

De-ionized

DMSO:

Dimethyl sulfoxide

EDS:

Energy-dispersive X-ray spectroscopy

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier transform infrared spectroscopy

g-C3N4:

Graphitic carbon nitride

GO:

Graphene oxide

GQD:

Graphene quantum dot

HOMO:

Highest occupied molecular orbital

HRTEM:

High-resolution transmission electron microscopy

LUMO:

Lowest occupied molecular orbital

MD:

Molecular dynamic

MWCNT:

Multiwalled carbon nanotube

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NHE:

Normal hydrogen electrode

PBQ:

Parabenzoquinone

PTH:

10-phenylphenothiazine

PVDF:

Polyvinylidene fluoride

SAED:

Selected area electron diffraction

SEM:

Scanning electron microscope

SWCNT:

Single-walled carbon nanotube

TDI:

Tolylene-2,4-diisocyanate

TiO2:

Titanium dioxide

UV-Vis:

Ultraviolet-visible

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

ZnO:

Zinc oxide

References

  1. Bhagyalekshmi, G., Rajendran, D.N.: Oxygen defect mediated CeO2 based binary and ternary nanocomposite for sustainable water purification. Mater. Lett. 273, 127929 (2020)

    Article  CAS  Google Scholar 

  2. Sheoran, K., Kaur, H., Siwal, S.S., Saini, A.K., Vo, D.-V.N., Thakur, V.K.: Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: synthesis and application. Chemosphere. 299, 134364 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. Hegab, H.M., Elaraby, A., Ibrahim, Y., Elmekawy, A., Al Marzooqi, F., Aljundi, I.H., Hasan, S.W.: Designing of amino silica covalently functionalized carboxylic multi-wall carbon nanotubes-based polyethersulfone membranes for enhancing oily wastewater treatment. J. Environ. Chem. Eng. 10, 108667 (2022)

    Article  CAS  Google Scholar 

  4. Cherusseri, J., Kar, K.K.: Self-standing carbon nanotube forest electrodes for flexible supercapacitors. RSC Adv. 5, 34335–34341 (2015)

    Article  CAS  Google Scholar 

  5. Cherusseri, J., Kar, K.K.: Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J. Mater. Chem. A. 4, 9910–9922 (2016)

    Article  CAS  Google Scholar 

  6. Cherusseri, J., Sharma, R., Kar, K.K.: Helically coiled carbon nanotube electrodes for flexible supercapacitors. Carbon. 105, 113–125 (2016)

    Article  CAS  Google Scholar 

  7. Tijani, J., Abdulkareem, A., Mustapha, S., Ndamitso, M., Bada, S., Sagadevan, S.: Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment. Sep. Purif. Technol. 332, 125736 (2024)

    Article  CAS  Google Scholar 

  8. Cherusseri, J., Kar, K.K.: Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability. J. Mater. Chem. A. 3, 21586–21598 (2015)

    Article  CAS  Google Scholar 

  9. Cherusseri, J., Kar, K.K.: Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance. RSC Adv. 6, 60454–60466 (2016)

    Article  CAS  Google Scholar 

  10. Cherusseri, J., Pandey, D., Thomas, J.: Symmetric, asymmetric, and battery-type supercapacitors using two-dimensional nanomaterials and composites. Batter. Supercaps. 3, 860–875 (2020)

    Article  CAS  Google Scholar 

  11. Cherusseri, J., Sambath Kumar, K., Pandey, D., Barrios, E., Thomas, J.: Vertically aligned graphene–carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors. Small. 15, 1902606 (2019)

    Article  CAS  Google Scholar 

  12. Thomas, S.A., Cherusseri, J.: Strategically designing layered two-dimensional SnS2-based hybrid electrodes: a futuristic option for low-cost supercapacitors. J. Energy Chem. 85, 394–417 (2023)

    Article  Google Scholar 

  13. Thomas, S.A., Pallavolu, M.R., Khan, M.E., Cherusseri, J.: Graphitic carbon nitride (g-C3N4): futuristic material for rechargeable batteries. J. Energy Storage. 68, 107673 (2023)

    Article  Google Scholar 

  14. Thomas, S.A., Patra, A., Al-Shehri, B.M., Selvaraj, M., Aravind, A., Rout, C.S.: MXene based hybrid materials for supercapacitors: recent developments and future perspectives. J. Energy Storage. 55, 105765 (2022)

    Article  Google Scholar 

  15. Noor, U., Farid, M.F., Sharif, A., Saleem, A., Nabi, Z., Mughal, M.F., Abbas, K., Ahmed, T.: Functionalized carbon 1D/2D nanomaterials for effective water desalination: synthesis, applications and cost issues. An overview. Desalination. 571, 117086 (2023)

    Article  Google Scholar 

  16. Chadha, U., Selvaraj, S.K., Thanu, S.V., Cholapadath, V., Abraham, A.M., Manoharan, M., Paramsivam, V.: A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. Mater. Res. Express. 9, 012003 (2022)

    CAS  Google Scholar 

  17. Abbo, H.S., Gupta, K.C., Khaligh, N.G., Titinchi, S.J.: Carbon nanomaterials for wastewater treatment. ChemBioEng Rev. 8, 463–489 (2021)

    Article  CAS  Google Scholar 

  18. Selvaraj, M., Hai, A., Banat, F., Haija, M.A.: Application and prospects of carbon nanostructured materials in water treatment: a review. J. Water Process. 33, 100996 (2020)

    Article  Google Scholar 

  19. Tabish, T.A., Memon, F.A., Gomez, D.E., Horsell, D.W., Zhang, S.: A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep. 8, 1817 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fan, H., Zhao, X., Yang, J., Shan, X., Yang, L., Zhang, Y., Li, X., Gao, M.: ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012)

    Article  CAS  Google Scholar 

  21. Abdolmaleki, A., Mohamadi, Z., Fashandi, H., Bazyar, Z.: Synergistic contribution of sulfonated poly (ether sulfone) and iminodiacetic acid functionalized-graphene oxide nanosheets towards enhancing cationic dye wastewater purification using nanocomposite membranes. J. Chem. Eng. 481, 148622 (2024)

    Article  CAS  Google Scholar 

  22. Zarghami, S., Mohammadi, T., Sadrzadeh, M., Van der Bruggen, B.: Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. Sci. Total Environ. 711, 134951 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Liu, T., Lyv, J., Xu, Y., Zheng, C., Liu, Y., Fu, R., Liang, L., Wu, J., Zhang, Z.: Graphene-based woven filter membrane with excellent strength and efficiency for water desalination. Desalination. 533, 115775 (2022)

    Article  CAS  Google Scholar 

  24. Schmidt, S.J., Dou, W., Sydlik, S.A.: Regeneratable graphene-based water filters for heavy metal removal at home. ACS ES&T Water. 8, 2179–2185 (2023)

    Article  Google Scholar 

  25. Siong, V.L.E., Tai, X.H., Lee, K.M., Juan, J.C., Lai, C.W.: Unveiling the enhanced photoelectrochemical and photocatalytic properties of reduced graphene oxide for photodegradation of methylene blue dye. RSC Adv. 10, 37905–37915 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, H.-H., Joshi, R.K., De Silva, K.K.H., Badam, R., Yoshimura, M.: Fabrication of reduced graphene oxide membranes for water desalination. J. Membr. Sci. 572, 12–19 (2019)

    Article  CAS  Google Scholar 

  27. Gupta, K., Khatri, O.P.: Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J. Colloid Interface Sci. 501, 11–21 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Fei, P., Wang, Q., Zhong, M., Su, B.: Preparation and adsorption properties of enhanced magnetic zinc ferrite-reduced graphene oxide nanocomposites via a facile one-pot solvothermal method. J. Alloys Compd. 685, 411–417 (2016)

    Article  CAS  Google Scholar 

  29. Gupta, V.K., Agarwal, S., Sadegh, H., Ali, G.A., Bharti, A.K., Makhlouf, A.S.H.: Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J. Mol. Liq. 237, 466–472 (2017)

    Article  CAS  Google Scholar 

  30. Mohan, S., Singh, D.K., Kumar, V., Hasan, S.H.: Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 194, 40–50 (2017)

    Article  CAS  Google Scholar 

  31. Yang, Y., Xu, L., Wang, H., Wang, W., Zhang, L.: TiO2/graphene porous composite and its photocatalytic degradation of methylene blue. Mater. Des. 108, 632–639 (2016)

    Article  CAS  Google Scholar 

  32. Arshad, A., Iqbal, J., Siddiq, M., Ali, M.U., Ali, A., Shabbir, H., Nazeer, U.B., Saleem, M.S.: Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 43, 10654–10660 (2017)

    Article  CAS  Google Scholar 

  33. Chen, P., Xing, X., Xie, H., Sheng, Q., Qu, H.: High catalytic activity of magnetic CuFe2O4/graphene oxide composite for the degradation of organic dyes under visible light irradiation. Chem. Phys. Lett. 660, 176–181 (2016)

    Article  CAS  Google Scholar 

  34. Dong, S., Pi, Y., Li, Q., Hu, L., Li, Y., Han, X., Wang, J., Sun, J.: Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: mechanism and degradation pathways. J. Alloys Compd. 663, 1–9 (2016)

    Article  CAS  Google Scholar 

  35. Janwery, D., Memon, F.H., Memon, A.A., Iqbal, M., Memon, F.N., Ali, W., Choi, K.-H., Thebo, K.H.: Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water. ACS Omega. 8, 7648–7656 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, C.S., Kim, I., Jang, J.W., Yoon, D.S., Lee, Y.J.: Aquaporin-incorporated graphene-oxide membrane for pressurized desalination with superior integrity enabled by molecular recognition. Adv. Sci. 8, 2101882 (2021)

    Article  CAS  Google Scholar 

  37. Ye, F., Wang, G., Ao, Y., Shen, L., Yang, Y., Feng, X., Zhang, Z., Yuan, H., Mi, Y., Yan, X.: Recyclable amine-functionalized carbon nanotubes for the separation of oily wastewater. Chemosphere. 288, 132571 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. Khodakarami, M., Honaker, R.: Photothermal self-floating aerogels based on chitosan functionalized with polydopamine and carbon nanotubes for removal of arsenic from wastewater. Sci. Total Environ. 912, 169519 (2023)

    Article  PubMed  Google Scholar 

  39. Gonzalez-Munoz, D., Martin-Somer, A., Strobl, K., Cabrera, S., De Pablo, P.J., Diaz-Tendero, S., Blanco, M., Aleman, J.: Enhancing visible-light photocatalysis via endohedral functionalization of single-walled carbon nanotubes with organic dyes. ACS Appl. Mater. Interfaces. 13, 24877–24886 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Al-Jammal, N., Abdullah, T.A., Juzsakova, T., Zsirka, B., Cretescu, I., Vágvölgyi, V., Sebestyén, V., Le Phuoc, C., Rasheed, R.T., Domokos, E.: Functionalized carbon nanotubes for hydrocarbon removal from water. J. Environ. Chem. Eng. 8, 103570 (2020)

    Article  CAS  Google Scholar 

  41. Shaban, M., Ashraf, A.M., Abukhadra, M.R.: TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep. 8, 781 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hanif, M.A., Kim, Y.-S., Akter, J., Kim, H.G., Kwac, L.K.: Fabrication of robust and stable N-doped ZnO/single-walled carbon nanotubes: characterization, photocatalytic application, kinetics, degradation products, and toxicity analysis. ACS Omega. 8, 16174–16185 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B. 112, 1427–1434 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., Kim, Y.H.: A carbon nanotube wall membrane for water treatment. Nat. Commun. 6(7109), 7109 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Xie, J., Ong, C.N., Vecitis, C.D., Zhou, Z.: Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci. Water Res. Technol. 1, 769–778 (2015)

    Article  CAS  Google Scholar 

  46. Robati, D., Mirza, B., Ghazisaeidi, R., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., Gupta, V.K.: Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube functionalized thiol (MWCNT-SH) as new adsorbent. J. Mol. Liq. 216, 830–835 (2016)

    Article  CAS  Google Scholar 

  47. Li, X., Zhang, Y., Jing, L., He, X.: Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of Malachite Green and tetrabromobisphenol A. Chem. Eng. J. 292, 326–339 (2016)

    Article  CAS  Google Scholar 

  48. Deb, A.S., Dwivedi, V., Dasgupta, K., Ali, S.M., Shenoy, K.: Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury (II) ions from wastewater: combined experimental and density functional theoretical approach. Chem. Eng. J. 313, 899–911 (2017)

    Article  Google Scholar 

  49. Samaniego-Benítez, J.E., García-García, A., Rivera-Manrique, S.I., Ramírez-Aparicio, J.: Multiwalled carbon nanotubes/zeolite composite for dye degradation under sunlight. Mater. Today Commun. 35, 106046 (2023)

    Article  Google Scholar 

  50. Shetty, S.J., Shilpa, M., Bhat, S.S., Pavithra, K., Moorkoth, S., Gupta, A., Surabhi, S., Shivamurthy, R., Gurumurthy, S.: Surface functionalized multi-wall carbon nanotubes for degradation of organic dyes. Mater. Chem. Phys. 311, 128566 (2024)

    Article  Google Scholar 

  51. Shokrgozar, A., Seifpanahi-Shabani, K., Mahmoodi, B., Mahmoodi, N.M., Khorasheh, F., Baghalha, M.: Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive Red 120) degradation ability using response surface methodology. Desalin. Water Treat. 216, 389–400 (2021)

    Article  CAS  Google Scholar 

  52. Zhang, L.L., Xiong, Z., Zhao, X.: Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano. 4, 7030–7036 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Alsawat, M., Altalhi, T., Santos, A., Losic, D.: Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst-free chemical vapour deposition. Carbon. 106, 295–305 (2016)

    Article  CAS  Google Scholar 

  54. Rashid, M.H.-O., Triani, G., Scales, N., in het Panhuis, M., Nghiem, L.D., Ralph, S.F.: Nanofiltration applications of tough MWNT buckypaper membranes containing biopolymers. J. Membr. Sci. 529, 23–34 (2017)

    Article  CAS  Google Scholar 

  55. Mahdavi, M.R., Delnavaz, M., Vatanpour, V., Farahbakhsh, J.: Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes. Sep. Purif. Technol. 184, 119–127 (2017)

    Article  CAS  Google Scholar 

  56. Abidin, M.N.Z., Goh, P.S., Ismail, A.F., Othman, M.H.D., Hasbullah, H., Said, N., Kadir, S.H.S.A., Kamal, F., Abdullah, M.S., Ng, B.C.: Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes. Mater. Sci. Eng. C. 77, 572–582 (2017)

    Article  CAS  Google Scholar 

  57. Gengan, S., Murthy, H.A., Sillanpää, M., Nhat, T.: Carbon dots and their application as photocatalyst in dye degradation studies-Mini review. Results Chem. 4, 100674 (2022)

    Article  CAS  Google Scholar 

  58. Nizam, N.U.M., Hanafiah, M.M., Mahmoudi, E., Mohammad, A.W.: Synthesis of highly fluorescent carbon quantum dots from rubber seed shells for the adsorption and photocatalytic degradation of dyes. Sci. Rep. 13, 12777 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Velumani, A., Sengodan, P., Arumugam, P., Rajendran, R., Santhanam, S., Palanisamy, M.: Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application. Curr. Appl. Phys. 20, 1176–1184 (2020)

    Article  Google Scholar 

  60. Mahat, N.A., Shamsudin, S.A.: Transformation of oil palm biomass to optical carbon quantum dots by carbonisation-activation and low temperature hydrothermal processes. Diam. Relat. Mater. 102, 107660 (2020)

    Article  CAS  Google Scholar 

  61. Lei, S., Zeng, M., Huang, D., Wang, L., Zhang, L., Xi, B., Ma, W., Chen, G., Cheng, Z.: Synergistic high-flux oil–saltwater separation and membrane desalination with carbon quantum dots functionalized membrane. ACS Sustain. Chem. Eng. 7, 13708–13716 (2019)

    Article  CAS  Google Scholar 

  62. XianáGuo, C.: Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem. Commun. 50, 7318–7321 (2014)

    Article  Google Scholar 

  63. Bashir, A., Munawar, T., Mukhtar, F., Nadeem, M.S., Manzoor, S., Ashiq, M.N., Khan, S.A., Koc, M., Iqbal, F.: Dual-functional fullerene supported NiO-based nanocomposite: efficient electrocatalyst for OER and photocatalyst for MB dye degradation. Mater. Chem. Phys. 293, 126886 (2023)

    Article  CAS  Google Scholar 

  64. Liu, Y., Phillips, B., Li, W., Zhang, Z., Fang, L., Qiu, J., Wang, S.: Fullerene-tailored graphene oxide interlayer spacing for energy-efficient water desalination. ACS Appl. Nano Mater. 1, 6168–6175 (2018)

    Article  CAS  Google Scholar 

  65. Pastrana-Martínez, L.M., Morales-Torres, S., Carabineiro, S.A., Buijnsters, J.G., Figueiredo, J.L., Silva, A.M., Faria, J.L.: Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Appl. Surf. Sci. 458, 839–848 (2018)

    Article  Google Scholar 

  66. Song, X., Yang, Q., Yin, M., Tang, D., Zhou, L.: Highly efficient pollutant removal of graphitic carbon nitride by the synergistic effect of adsorption and photocatalytic degradation. RSC Adv. 8, 7260–7268 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Priya, N.C., Sandhya, K., Rajendran, D.N.: Study on electrical conductivity and activation energy of doped ceria nanostructures. Electrochem. Energy Technol. 3, 49–53 (2018)

    Article  Google Scholar 

  68. Thomas, S.A., Cherusseri, J.: Recent advances in synthesis and properties of zirconium-based MXenes for application in rechargeable batteries. Energy Storage, e475 (2023)

    Google Scholar 

  69. Thomas, S.A., Cherusseri, J.: A review of Nb2CT x MXene as an emerging 2D material: synthesis, applications in rechargeable batteries and supercapacitors, progress, and outlook. Energy Fuel. 37, 7555–7576 (2023)

    Article  CAS  Google Scholar 

  70. Richard, B., Thomas, S.A., Reddy M, A., Pallavolu, M.R., Cherusseri, J.: Minireview on fluid manipulation techniques for the synthesis and energy applications of two-dimensional MXenes: advances, challenges, and perspectives. Energy Fuel. 37, 6999–7013 (2023)

    Article  CAS  Google Scholar 

  71. Cherusseri, J., Choudhary, N., Kumar, K.S., Jung, Y., Thomas, J.: Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz. 4, 840–858 (2019)

    Article  CAS  Google Scholar 

  72. Thomas, S.A., Cherusseri, J.: Boron carbon nitride (BCN): emerging two-dimensional nanomaterial for supercapacitors. J. Mater. Chem. A. 11, 23148–23187 (2023)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepthi N. Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thomas, S.A., Cherusseri, J., N. Rajendran, D., Isaac, R. (2024). Functionalized Carbon Nanostructures for Wastewater Treatments. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics