Skip to main content

Functionalized Carbon Nanostructures for Smart Packaging

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

Smart packaging applications have been studied for the potential use of functionalized carbon nanostructures like carbon dots, nanotubes, and graphene. These materials have unique properties, such as high mechanical strength and electrical conductivity that make them suitable for creating intelligent packaging systems. For example, carbon nanotubes can be used to create sensors that can detect changes in temperature or humidity, while graphene can be used to create packaging materials that are impermeable to gases and liquids. Additionally, functionalized carbon nanostructures can be used to enhance the barrier properties to extend the shelf life of packaged goods, the ability to detect and respond to changes in the environment (such as temperature or humidity), and the ability to sense and respond to specific chemicals or pathogens. Functionalized carbon nanostructures can be used to create active packaging, which can release or absorb specific compounds to improve the quality or safety of the packaged goods. Overall, functionalized carbon nanostructures have the potential to revolutionize the field of smart packaging, enabling the development of new, intelligent packaging systems that can improve the safety and quality of food and other consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Geueke, B., Groh, K., Muncke, J.: Food packaging in the circular economy: overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 193, 491–505 (2018)

    Article  CAS  Google Scholar 

  2. Rahman, M.S.: Packaging as a preservation technique. In: Handbook of Food Preservation, pp. 895–904. CRC Press, 5 Howick Place, London SW1P 1WG, UK (2020)

    Google Scholar 

  3. Twede, D.: History of packaging. In: The Routledge Companion to Marketing History, pp. 115–129. Routledge, UK (2016)

    Google Scholar 

  4. Risch, S.J.: Food packaging history and innovations. J. Agric. Food Chem. 57, 8089–8092 (2009)

    Article  CAS  Google Scholar 

  5. Hämäläinen, A.: The possibilities of a Finnish ready-made meals company to make their food packaging more sustainable, In: Helsinki, pp. 1–116. LUT University, Finlend (2019)

    Google Scholar 

  6. Lee, S.J., Rahman, A.M.: Intelligent packaging for food products. In: Innovations in Food Packaging, pp. 171–209. Academic Press, USA (2014)

    Google Scholar 

  7. Basu, P.K., Indukuri, D., Keshavan, S., Navratna, V., Vanjari, S.R.K., Raghavan, S., Bhat, N.: Graphene based E. coli sensor on flexible acetate sheet. Sensors Actuators B Chem. 190, 342–347 (2014)

    Article  CAS  Google Scholar 

  8. Shah, M., Kolhe, P., Roberts, A., Shrikrishna, N.S., Gandhi, S.: Ultrasensitive immunosensing of Penicillin G in food samples using reduced graphene oxide (rGO) decorated electrode surface. Colloids Surf. B: Biointerfaces. 219, 112812 (2022)

    Article  CAS  Google Scholar 

  9. Qader, İ.N., Mediha, K., Dagdelen, F., Aydoğdu, Y.: A review of smart materials: researches and applications. El-Cezeri. 6, 755–788 (2019)

    Google Scholar 

  10. Mohammadian, E., Alizadeh-Sani, M., Jafari, S.M.: Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr. Rev. Food Sci. Food Saf. 19, 2885–2931 (2020)

    Article  Google Scholar 

  11. Huang, B., Chen, F., Shen, Y., Qian, K., Wang, Y., Sun, C., Zhao, X., Cui, B., Gao, F., Zeng, Z.: Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials. 8, 102 (2018)

    Article  Google Scholar 

  12. Ali, A., Bairagi, S., Ganie, S.A., Ahmed, S.: Polysaccharides and proteins based bionanocomposites as smart packaging materials: from fabrication to food packaging applications a review. Int. J. Biol. Macromol. 252, 126534 (2023)

    Article  CAS  Google Scholar 

  13. Azizi-Lalabadi, M., Hashemi, H., Feng, J., Jafari, S.M.: Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv. Colloid Interf. Sci. 284, 102250 (2020)

    Article  CAS  Google Scholar 

  14. Bondi, S., Lackey, W., Johnson, R., Wang, X., Wang, Z.: Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon. 44, 1393–1403 (2006)

    Article  CAS  Google Scholar 

  15. Omerović, N., Djisalov, M., Živojević, K., Mladenović, M., Vunduk, J., Milenković, I., Knežević, N.Ž., Gadjanski, I., Vidić, J.: Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 20, 2428–2454 (2021)

    Article  Google Scholar 

  16. Mustafa, F., Andreescu, S.: Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv. 10, 19309–19336 (2020)

    Article  CAS  Google Scholar 

  17. Ezati, P., Priyadarshi, R., Rhim, J.-W.: Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications. Sustain. Mater. Technol. 33, e00494 (2022)

    CAS  Google Scholar 

  18. Khan, A., Ezati, P., Kim, J.-T., Rhim, J.-W.: Biocompatible carbon quantum dots for intelligent sensing in food safety applications: opportunities and sustainability. Mater. Today Sustainability. 21, 100306 (2022)

    Article  Google Scholar 

  19. Wang, Y., Duncan, T.V.: Nanoscale sensors for assuring the safety of food products. Curr. Opin. Biotechnol. 44, 74–86 (2017)

    Article  CAS  Google Scholar 

  20. El-Shabasy, R.M., Farouk Elsadek, M., Mohamed Ahmed, B., Fawzy Farahat, M., Mosleh, K.N., Taher, M.M.: Recent developments in carbon quantum dots: properties, fabrication techniques, and bio-applications. Processes. 9, 388 (2021)

    Article  CAS  Google Scholar 

  21. de Sousa, M.S., Schlogl, A.E., Estanislau, F.R., Souza, V.G.L., dos Reis Coimbra, J.S., Santos, I.J.B.: Nanotechnology in packaging for food industry: past, present, and future. Coatings. 13, 1411 (2023)

    Article  Google Scholar 

  22. Deepika, L.K., Gaikwad, K.K.: Carbon dots for food packaging applications. Sustain. Food. Technol. 1, 185–99 (2022)

    Google Scholar 

  23. Lam, C.-W., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L.: A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36, 189–217 (2006)

    Article  CAS  Google Scholar 

  24. Xu, D.: Carbon nanotubes (CNTs) composite materials and food packaging. In: Composites Materials for Food Packaging, Insights into Modern Food Science, pp. 235–249. Wiley, Hoboken (2018)

    Google Scholar 

  25. Zhong, Y., Godwin, P., Jin, Y., Xiao, H.: Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv. Ind. Eng. Polym. Res. 3, 27–35 (2020)

    Google Scholar 

  26. Rossa, V., Ferreira, L.E.M., da Costa Vasconcelos, S., Shimabukuro, E.T.T., da Costa Madriaga, V.G., Carvalho, A.P., Pergher, S.B.C., da Silva, F.d.C., Ferreira, V.F., Junior, C.A.C.: Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Adv. 12, 14084–14111 (2022)

    Google Scholar 

  27. Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Han, S.: Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biol. Technol. 186, 111845 (2022)

    Article  CAS  Google Scholar 

  28. Zhao, L., Zhang, M., Mujumdar, A.S., Adhikari, B., Wang, H.: Preparation of a novel carbon dot/polyvinyl alcohol composite film and its application in food preservation. ACS Appl. Mater. Interfaces. 14, 37528–37539 (2022)

    Article  CAS  Google Scholar 

  29. Rani, S., Kumar, K.D., Mandal, S., Kumar, R.: Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. J. Polym. Res. 27, 1–10 (2020)

    Article  Google Scholar 

  30. Pinto, T.d.S., Rodrigues, P.N., Marinho, L.E., Verly, R.M., Roa, J.P.B., de Oliveira, L.C., Pereira, F.V., de Magalhães, M.T., de Mesquita, J.P.: Self-assembled hybrid nanocomposite films of carbon dots and hydrolyzed collagen. Mater. Chem. Phys. 230, 44–53 (2019)

    Google Scholar 

  31. Schmitz, F., de Albuquerque, M.B.S., Alberton, M.D., Riegel-Vidotti, I.C., Zimmermann, L.M.: Zein films with ZnO and ZnO: Mg quantum dots as functional nanofillers: new nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 91, 106709 (2020)

    Article  CAS  Google Scholar 

  32. Mei, S., Fu, B., Su, X., Chen, H., Lin, H., Zheng, Z., Dai, C., Yang, D.-P.: Developing silk sericin-based and carbon dots reinforced bio-nanocomposite films and potential application to litchi fruit. LWT. 164, 113630 (2022)

    Article  CAS  Google Scholar 

  33. De Matteis, V., Cascione, M., Costa, D., Martano, S., Manno, D., Cannavale, A., Mazzotta, S., Paladini, F., Martino, M., Rinaldi, R.: Aloe vera silver nanoparticles addition in chitosan films: improvement of physicochemical properties for eco-friendly food packaging material. J. Mater. Res. Technol. 24, 1015–1033 (2023)

    Article  Google Scholar 

  34. Zou, Y., Sun, Y., Shi, W., Wan, B., Zhang, H.: Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem. 399, 133962 (2023)

    Article  CAS  Google Scholar 

  35. Venezia, V., Prieto, C., Evtoski, Z., Marcoaldi, C., Silvestri, B., Vitiello, G., Luciani, G., Lagaron, J.M.: Electrospun hybrid TiO2/humic substance PHBV films for active food packaging applications. J. Ind. Eng. Chem. 124, 510–522 (2023)

    Article  CAS  Google Scholar 

  36. Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G.M., Kenny, J., Puglia, D.: Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur. Polym. J. 79, 1–12 (2016)

    Article  Google Scholar 

  37. Yuan, S., Xue, Z., Zhang, S., Wu, C., Feng, Y., Kou, X.: The characterization of antimicrobial nanocomposites based on chitosan, cinnamon essential oil, and TiO2 for fruits preservation. Food Chem. 413, 135446 (2023)

    Article  CAS  Google Scholar 

  38. Chen, Y., Li, Y., Qin, S., Han, S., Qi, H.: Antimicrobial, UV blocking, water-resistant and degradable coatings and packaging films based on wheat gluten and lignocellulose for food preservation. Compos. Part B. 238, 109868 (2022)

    Article  CAS  Google Scholar 

  39. Lin, Z., Wu, G., Zhao, L., Lai, K.W.C.: Detection of bacterial metabolic volatile indole using a graphene-based field-effect transistor biosensor. Nanomaterials. 11, 1155 (2021)

    Article  Google Scholar 

  40. Grande, C.D., Mangadlao, J., Fan, J., De Leon, A., Delgado-Ospina, J., Rojas, J.G., Rodrigues, D.F., Advincula, R.: Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry. In: Macromolecular Symposia, p. 1600114. Wiley Online Library,Weinheim, Germany (2017)

    Google Scholar 

  41. Song, X., Wang, D., Kim, M.: Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin. Food Chem. 342, 128257 (2021)

    Article  CAS  Google Scholar 

  42. Shukla, S., Haldorai, Y., Khan, I., Kang, S.-M., Kwak, C.H., Gandhi, S., Bajpai, V.K., Huh, Y.S., Han, Y.-K.: Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@ SnO2 nanocomposite. Mater. Sci. Eng. C. 113, 110916 (2020)

    Article  CAS  Google Scholar 

  43. Elfadil, D., Silveri, F., Palmieri, S., Della Pelle, F., Sergi, M., Del Carlo, M., Amine, A., Compagnone, D.: Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta. 253, 124010 (2023)

    Article  CAS  Google Scholar 

  44. Schaefer, D., Cheung, W.M.: Smart packaging: opportunities and challenges. Procedia Cirp. 72, 1022–1027 (2018)

    Article  Google Scholar 

  45. Young, E., Mirosa, M., Bremer, P.: A systematic review of consumer perceptions of smart packaging technologies for food. Front. Sustainable Food Syst. 4, 63 (2020)

    Article  Google Scholar 

  46. Shah, M., Kolhe, P., Gandhi, S.: Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan. Chemosphere. 321, 138148 (2023)

    Article  CAS  Google Scholar 

  47. Labuza, T.P., Breene, W.: Applications of “active packaging” for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods 1. J. Food Process. Preserv. 13, 1–69 (1989)

    Article  CAS  Google Scholar 

  48. Wyrwa, J., Barska, A.: Innovations in the food packaging market: active packaging. Eur. Food Res. Technol. 243, 1681–1692 (2017)

    Article  CAS  Google Scholar 

  49. Alves, J., Gaspar, P.D., Lima, T.M., Silva, P.D.: What is the role of active packaging in the future of food sustainability? A systematic review. J. Sci. Food Agric. 103, 1004–1020 (2023)

    Article  CAS  Google Scholar 

  50. Roy, S., Rhim, J.-W.: Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 148, 666–676 (2020)

    Article  CAS  Google Scholar 

  51. Kumar, L., Gaikwad, K.K.: Carbon dots for food packaging applications. Sustain. Food Technol. 1, 185–199 (2023)

    Article  Google Scholar 

  52. Rodrigues, C., Souza, V.G.L., Coelhoso, I., Fernando, A.L.: Bio-based sensors for smart food packaging – current applications and future trends. Sensors. 21, 2148 (2021)

    Article  CAS  Google Scholar 

  53. Chen, S., Brahma, S., Mackay, J., Cao, C., Aliakbarian, B.: The role of smart packaging system in food supply chain. J. Food Sci. 85, 517–525 (2020)

    Article  CAS  Google Scholar 

  54. Rodrigues, C., Paula, C.D.D., Lahbouki, S., Meddich, A., Outzourhit, A., Rashad, M., Pari, L., Coelhoso, I., Fernando, A.L., Souza, V.G.: Opuntia spp.: an overview of the bioactive profile and food applications of this versatile crop adapted to arid lands. Foods. 12, 1465 (2023)

    Article  CAS  Google Scholar 

  55. Siró, I.: Intelligent packaging and food safety. In: Practical Food Safety: Contemporary Issues and Future Directions, pp. 375–394. Wiley, Hoboken (2014)

    Chapter  Google Scholar 

  56. Qu, J.-H., Wei, Q., Sun, D.-W.: Carbon dots: principles and their applications in food quality and safety detection. Crit. Rev. Food Sci. Nutr. 58, 2466–2475 (2018)

    Article  CAS  Google Scholar 

  57. Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., Tobback, P.: Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci. Technol. 19, S103–S112 (2008)

    Article  Google Scholar 

  58. Pires, J.R.A., Rodrigues, C., Coelhoso, I., Fernando, A.L., Souza, V.G.L.: Current applications of bionanocomposites in food processing and packaging. Polymers. 15, 2336 (2023)

    Article  CAS  Google Scholar 

  59. Gao, J., Chakraborthy, A., He, S., Yang, S., Afsarimanesh, N., Nag, A., Deng, S.: Graphene-based sensors for the detection of microorganisms in food: a review. Biosensors. 13, 579 (2023)

    Article  CAS  Google Scholar 

  60. He, S., Hong, Y., Liao, M., Li, Y., Qiu, L., Peng, H.: Flexible sensors based on assembled carbon nanotubes. Aggregate. 2, e143 (2021)

    Article  CAS  Google Scholar 

  61. Thi, T.C., Hai, B.N., Duc, D.P.N., Thi, T.V., Ngoc, A.N., Viet, T.N., Nguyen, V.Q., Cam, T.V., Phuong, T.B.T., Duc, T.P.: Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection. Bull. Environ. Contam. Toxicol. 106, 1017–1023 (2021)

    Article  Google Scholar 

  62. Huang, Q., Lin, X., Tong, L., Tong, Q.-X.: Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain. Chem. Eng. 8, 1644–1650 (2020)

    Article  Google Scholar 

  63. Zhang, H., He, R., Niu, Y., Han, F., Li, J., Zhang, X., Xu, F.: Graphene-enabled wearable sensors for healthcare monitoring. Biosens. Bioelectron. 197, 113777 (2022)

    Article  CAS  Google Scholar 

  64. Wu, J., Huang, W., Liang, Y., Wu, Z., Zhong, B., Zhou, Z., Ye, J., Tao, K., Zhou, Y., Xie, X.: Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 7, 2001084 (2021)

    Article  CAS  Google Scholar 

  65. Vasseghian, Y., Dragoi, E.-N., Moradi, M., Khaneghah, A.M.: A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem. Toxicol. 148, 111931 (2021)

    Article  Google Scholar 

  66. Kausar, A.: Poly (methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite: a review. Polym.-Plast. Technol. Mater. 58, 821–842 (2019)

    CAS  Google Scholar 

  67. Huang, Y., Zeng, X., Wang, W., Guo, X., Hao, C., Pan, W., Liu, P., Liu, C., Ma, Y., Zhang, Y.: High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring. Sensors Actuators A Phys. 278, 1–10 (2018)

    Article  CAS  Google Scholar 

  68. Zhang, M., Wang, C., Wang, Q., Jian, M., Zhang, Y.: Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces. 8, 20894–20899 (2016)

    Article  CAS  Google Scholar 

  69. Geim Andre, K., Novoselov, K.S.: The Rise of Graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19. World Scientific, Singapore (2010)

    Google Scholar 

  70. Goh, K., Heising, J.K., Yuan, Y., Karahan, H.E., Wei, L., Zhai, S., Koh, J.-X., Htin, N.M., Zhang, F., Wang, R.: Sandwich-architectured poly (lactic acid)–graphene composite food packaging films. ACS Appl. Mater. Interfaces. 8, 9994–10004 (2016)

    Article  CAS  Google Scholar 

  71. Khan, A., Ezati, P., Rhim, J.-W.: Chitosan/starch-based active packaging film with N, P-doped carbon dots for meat packaging. ACS Appl. Bio Mater. 6, 1294–1305 (2023)

    Article  CAS  Google Scholar 

  72. Roy, S., Ezati, P., Rhim, J.-W.: Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. ACS Appl. Polym. Mater. 3, 6437–6445 (2021)

    Article  CAS  Google Scholar 

  73. Figueroa-Lopez, K.J., Torres-Giner, S., Angulo, I., Pardo-Figuerez, M., Escuin, J.M., Bourbon, A.I., Cabedo, L., Nevo, Y., Cerqueira, M.A., Lagaron, J.M.: Development of active barrier multilayer films based on electrospun antimicrobial hot-tack food waste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and cellulose nanocrystal interlayers. Nanomaterials. 10, 2356 (2020)

    Article  CAS  Google Scholar 

  74. Mustafa, F., Andreescu, S.: Chemical and biological sensors for food-quality monitoring and smart packaging. Foods. 7, 168 (2018)

    Article  CAS  Google Scholar 

  75. Smith, A.W., Poulston, S., Rowsell, L., Terry, L.A., Anderson, J.A.: A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit. Platin. Met. Rev. 53, 112–122 (2009)

    Article  CAS  Google Scholar 

  76. Chaudhry, Q., Castle, L.: Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22, 595–603 (2011)

    Article  CAS  Google Scholar 

  77. Olmedilla-Alonso, B., Jiménez-Colmenero, F., Sánchez-Muniz, F.J.: Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 95, 919–930 (2013)

    Article  Google Scholar 

  78. Sand, C.K.: Active and intelligent packaging= longer shelf life. J. Food Technol. 74, 128–130 (2020)

    Google Scholar 

  79. Vi, T.T.T., Kumar, S.R., Pang, J.-H.S., Liu, Y.-K., Chen, D.W., Lue, S.J.: Synergistic antibacterial activity of silver-loaded graphene oxide towards Staphylococcus aureus and Escherichia coli. Nanomaterials. 10, 366 (2020)

    Article  CAS  Google Scholar 

  80. Gupta, D.K., Rajaura, R.S., Sharma, K.: Synthesis and characterization of graphene oxide nanoparticles and their antibacterial activity. Int. J. Environ. Sci. Technol. 1, 16–24 (2015)

    Google Scholar 

  81. Raul, P.K., Thakuria, A., Das, B., Devi, R.R., Tiwari, G., Yellappa, C., Kamboj, D.V.: Carbon nanostructures as antibacterials and active food-packaging materials: a review. ACS Omega. 7, 11555–11559 (2022)

    Article  CAS  Google Scholar 

  82. Arfat, Y.A., Ahmed, J., Ejaz, M., Mullah, M.: Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 107, 194–203 (2018)

    Article  CAS  Google Scholar 

  83. Sani, M.A., Azizi-Lalabadi, M., Tavassoli, M., Mohammadi, K., McClements, D.J.: Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials. 11, 1331 (2021)

    Article  CAS  Google Scholar 

  84. Tran, T.N., Mai, B.T., Setti, C., Athanassiou, A.: Transparent bioplastic derived from CO2-based polymer functionalized with oregano waste extract toward active food packaging. ACS Appl. Mater. Interfaces. 12, 46667–46677 (2020)

    Article  CAS  Google Scholar 

  85. Shakiba, M., Jahangiri, P., Rahmani, E., Hosseini, S.M., Bigham, A., Foroozandeh, A., Tajiki, A., Pourmadadi, M., Nasiri, S., Jouybar, S.: Drug-loaded carbon nanotube incorporated in nanofibers: a multifunctional nanocomposite for smart chronic wound healing. ACS Appl. Polym. Mater. 5, 5662–5675 (2023)

    Article  CAS  Google Scholar 

  86. Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z., Younis, K.: Application of nanotechnology in food packaging: pros and cons. J. Agric. Food Res. 7, 100270 (2022)

    CAS  Google Scholar 

  87. Huang, K., Wang, Y.: Recent advances in self-healing materials for food packaging. Packag. Technol. Sci. 36, 157–169 (2022)

    Article  Google Scholar 

  88. Liu, Y., Zhao, J., Zhao, L., Li, W., Zhang, H., Yu, X., Zhang, Z.: High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl. Mater. Interfaces. 8, 311–320 (2016)

    Article  CAS  Google Scholar 

  89. Wu, A.S., Coppola, A.M., Sinnott, M.J., Chou, T.-W., Thostenson, E.T., Byun, J.-H., Kim, B.-S.: Sensing of damage and healing in three-dimensional braided composites with vascular channels. Compos. Sci. Technol. 72, 1618–1626 (2012)

    Article  CAS  Google Scholar 

  90. Guo, S., Meshot, E.R., Kuykendall, T., Cabrini, S., Fornasiero, F.: Nanofluidic transport through isolated carbon nanotube channels: advances, controversies, and challenges. Adv. Mater. 27, 5726–5737 (2015)

    Article  CAS  Google Scholar 

  91. Gadwal, I.: A brief overview on preparation of self-healing polymers and coatings via hydrogen bonding interactions. Macromolecules. 1, 18–36 (2020)

    Google Scholar 

  92. Smirnov, M.A., Nikolaeva, A.L., Bobrova, N.V., Vorobiov, V.K., Smirnov, A.V., Lahderanta, E., Sokolova, M.P.: Self-healing films based on chitosan containing citric acid/choline chloride deep eutectic solvent. Polym. Test. 97, 107156 (2021)

    Article  CAS  Google Scholar 

  93. Ouyang, Z., Yu, H.-Y., Song, M., Zhu, J., Wang, D.: Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 198, 108300 (2020)

    Article  CAS  Google Scholar 

  94. Yang, Y., Ren, J., Luo, C., Yuan, R., Ge, L.: Fabrication of l-menthol contained edible self-healing coating based on guest-host interaction. Colloids Surf. A Physicochem. Eng. Asp. 597, 124743 (2020)

    Article  CAS  Google Scholar 

  95. Xuan, H., Zhu, Y., Ren, J., Ge, L.: Intrinsic self-healing and biocompatibility of carbon nitride coatings via inhibiting or degrading ethylene for fruit preservation. J. Mater. Sci. 54, 9282–9290 (2019)

    Article  CAS  Google Scholar 

  96. Cheng, H., Xu, H., McClements, D.J., Chen, L., Jiao, A., Tian, Y., Miao, M., Jin, Z.: Recent advances in intelligent food packaging materials: principles, preparation and applications. Food Chem. 375, 131738 (2022)

    Article  CAS  Google Scholar 

  97. Ghaani, M., Cozzolino, C.A., Castelli, G., Farris, S.: An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 51, 1–11 (2016)

    Article  CAS  Google Scholar 

  98. Kalpana, S., Priyadarshini, S., Leena, M.M., Moses, J., Anandharamakrishnan, C.: Intelligent packaging: trends and applications in food systems. Trends Food Sci. Technol. 93, 145–157 (2019)

    Article  CAS  Google Scholar 

  99. Bayram, B., Ozkan, G., Kostka, T., Capanoglu, E., Esatbeyoglu, T.: Valorization and application of fruit and vegetable wastes and by-products for food packaging materials. Molecules. 26, 4031 (2021)

    Article  CAS  Google Scholar 

  100. Mills, A.: Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 34, 1003–1011 (2005)

    Article  CAS  Google Scholar 

  101. Kerry, J., O’Grady, M., Hogan, S.: Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113–130 (2006)

    Article  CAS  Google Scholar 

  102. Fuertes, G., Soto, I., Vargas, M., Valencia, A., Sabattin, J., Carrasco, R.: Nanosensors for a monitoring system in intelligent and active packaging. J. Sens. 2016, 1 (2016)

    Google Scholar 

  103. Yoshida, C.M., Maciel, V.B.V., Mendonça, M.E.D., Franco, T.T.: Chitosan biobased and intelligent films: monitoring pH variations. LWT-Food Sci. Technol. 55, 83–89 (2014)

    Article  CAS  Google Scholar 

  104. Nuin, M., Alfaro, B., Cruz, Z., Argarate, N., George, S., Le Marc, Y., Olley, J., Pin, C.: Modelling spoilage of fresh turbot and evaluation of a time–temperature integrator (TTI) label under fluctuating temperature. Int. J. Food Microbiol. 127, 193–199 (2008)

    Article  Google Scholar 

  105. Lee, S.Y., Lee, S.J., Choi, D.S., Hur, S.J.: Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 95, 2799–2810 (2015)

    Article  CAS  Google Scholar 

  106. Mlalila, N., Kadam, D.M., Swai, H., Hilonga, A.: Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J. Food Sci. Technol. 53, 3395–3407 (2016)

    Article  CAS  Google Scholar 

  107. Caon, T., Martelli, S.M., Fakhouri, F.M.: New trends in the food industry: application of nanosensors in food packaging. In: Nanobiosensors, pp. 773–804. Academic Press, USA (2017)

    Google Scholar 

  108. Bhadra, S., Narvaez, C., Thomson, D.J., Bridges, G.E.: Non-destructive detection of fish spoilage using a wireless basic volatile sensor. Talanta. 134, 718–723 (2015)

    Article  CAS  Google Scholar 

  109. Chen, H.-Z., Zhang, M., Bhandari, B., Yang, C.-H.: Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT. 99, 43–49 (2019)

    Article  CAS  Google Scholar 

  110. Tominaga, T.: Rapid detection of Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica and other related bacteria in food by lateral-flow test strip immunoassays. J. Microbiol. Methods. 147, 43–49 (2018)

    Article  CAS  Google Scholar 

  111. Jeevarathinam, C., Solomon, J.S., Pandian, G.: Cresceiaalata flower extract as reducing catalyst for green synthesis of Au/Ag bimetallic nano medicine and its antibacterial activities. J. Appl. Phys. Sci. Int. 11, 170–182 (2019)

    CAS  Google Scholar 

  112. Tominaga, T.: Enhanced sensitivity of lateral-flow test strip immunoassays using colloidal palladium nanoparticles and horseradish peroxidase. LWT. 86, 566–570 (2017)

    Article  CAS  Google Scholar 

  113. Altintas, Z., Akgun, M., Kokturk, G., Uludag, Y.: A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 100, 541–548 (2018)

    Article  CAS  Google Scholar 

  114. Kolhe, P., Roberts, A., Gandhi, S.: Fabrication of an ultrasensitive electrochemical immunosensor coupled with biofunctionalized zero-dimensional graphene quantum dots for rapid detection of cephalexin. Food Chem. 398, 133846 (2023) https://www.sciencedirect.com/science/article/pii/S0308814622018088

    Article  CAS  Google Scholar 

  115. Fu, Y., Zhang, L., Chen, G.: Preparation of a carbon nanotube-copper nanoparticle hybrid by chemical reduction for use in the electrochemical sensing of carbohydrates. Carbon. 50, 2563–2570 (2012)

    Article  CAS  Google Scholar 

  116. Asgari, P., Moradi, O., Tajeddin, B.: The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Int. Nano Lett. 4, 1–5 (2014)

    Article  Google Scholar 

  117. Liu, S.F., Petty, A.R., Sazama, G.T., Swager, T.M.: Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angew. Chem. Int. Ed. 54, 6554–6557 (2015)

    Article  CAS  Google Scholar 

  118. Arora, A., Padua, G.: Nanocomposites in food packaging. J. Food Sci. 75, R43–R49 (2010)

    Article  CAS  Google Scholar 

  119. Moghadam, A.D., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos. Part B. 77, 402–420 (2015)

    Article  Google Scholar 

  120. Siracusa, V., Lotti, N.: Intelligent packaging to improve shelf life. In: Food Quality and Shelf Life, pp. 261–279. Academic Press, USA (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarmah, J.K., Ali, A.A., Saikia, R., Dey, R.R., Dutta, R.R. (2024). Functionalized Carbon Nanostructures for Smart Packaging. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics