Skip to main content

Functionalized Carbon Nanostructures for Gas Sensing Applications

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

The search for new sensors is a practice in constant evolution, with the objective of obtaining devices with high sensitivity and selectivity, reproducible, robust, with rapid response generation, easy operation, and low cost. The application of sensors for gas monitoring is extremely important, especially when it comes to the detection of gases toxic to human health. However, gas detection may not be a simple practice, as it is necessary to use materials with physical and chemical properties suitable for the desired application. Nanostructured materials have been highlighted for application in gas sensors, mainly due to their characteristics of high surface area and minimum particle size, which facilitates their interaction with the analyte. Furthermore, these materials can be modified to increase their reactivity, providing detections with high sensitivity, selectivity, and accuracy. In this chapter, special attention will be given to the use of nanostructured materials applied to the development of electrochemical sensors for the detection of different types of gaseous analytes. First, a general description of this type of material and its forms of modification will be discussed, followed by an overview of obtaining electrochemical sensors. In addition, some current applications for gas detection will be presented, as well as their application trends as future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dariyal, P., Sharma, S., Chauhan, G.S., Singh, B.P., Dhakate, S.R.: Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanosci. Adv. 3(23), 6514–6544 (2021). https://doi.org/10.1039/D1NA00707F

    Article  Google Scholar 

  2. Chen, X., Leishman, M., Bagnall, D., Nasiri, N.: Nanostructured gas sensors: from air quality and environmental monitoring to healthcare and medical applications. Nano. 11(8), 1927 (2021). https://doi.org/10.3390/nano11081927

    Article  CAS  Google Scholar 

  3. Nie, E., Zheng, G., Shao, Z., Yang, J., Chen, T.: Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag. 79, 188–195 (2018). https://doi.org/10.1016/j.wasman.2018.07.024

    Article  CAS  Google Scholar 

  4. Zhang, T., Zhou, Y., Liu, P., Hu, J.: A novel strategy to identify gases by a single catalytic combustible sensor working in its linear range. Sensors Actuators B: Chem. 321, 128514 (2020). https://doi.org/10.1016/j.snb.2020.128514

    Article  CAS  Google Scholar 

  5. Li, G., Yuan, H., Mou, J., Dai, E., Zhang, H., Li, Z., Zhao, Y., Dai, Y., Zhang, X.: Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes. Compos. Commun. 29, 101043 (2022). https://doi.org/10.1016/j.coco.2021.101043

    Article  Google Scholar 

  6. Krishna, K.G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S., Joshi, D.: Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review. Sensors Actuators A: Phys. 341, 113578 (2022). https://doi.org/10.1016/j.sna.2022.113578

    Article  CAS  Google Scholar 

  7. Pathak, A.K., Viphavakit, C.: A review on all-optical fiber-based VOC sensors: heading towards the development of promising technology. Sensors Actuators A: Phys. 338, 113455 (2022). https://doi.org/10.1016/j.sna.2022.113455

    Article  CAS  Google Scholar 

  8. Occelli, C., Fiorido, T., Perrin-Pellegrino, C., Seguin, J.L.: Sensors for anaerobic hydrogen measurement: a comparative study between a resistive PdAu based sensor and a commercial thermal conductivity sensor. Int. J. Hydrog. Energy. 48(46), 17729–17741 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.193

    Article  CAS  Google Scholar 

  9. Day, C., Lee, T.A., Barua, N., Hutter, T.: Performance evaluation of an ambient volatile organics sensor based on mesoporous silica preconcentrator and a photoionization detector. Sensors Actuators A: Phys. 355, 114320 (2023). https://doi.org/10.1016/j.sna.2023.114320

    Article  CAS  Google Scholar 

  10. Griffin, G.D., Stratis-Cullum, D.N.: Biosen. In: Schaechter, M. (ed.) Encyclopedia of Microbiology, 3rd edn, pp. 88–103. Elsevier Inc., Amsterdam (2009)

    Chapter  Google Scholar 

  11. Daneshkhah, A., Vij, S., Siegel, A.P., Agarwal, M.: Polyetherimide/carbon black composite sensors demonstrate selective detection of medium-chain aldehydes including nonanal. Chem. Eng. J. 383, 123104 (2020). https://doi.org/10.1016/j.cej.2019.123104

    Article  CAS  Google Scholar 

  12. Keshtkar, S., Rashidi, A., Kooti, M., Askarieh, M., Pourhashem, S., Ghasemy, E., Izadi, N.: A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C60 nanohybrid: experimental and theory study. Talanta. 188, 531–539 (2018). https://doi.org/10.1016/j.talanta.2018.05.099

    Article  CAS  Google Scholar 

  13. Xu, H., Tu, X., Wang, X., Liu, X., Fan, G.: Theoretical study of the adsorption and sensing properties of pure and metal doped C24N24 fullerene for its potential application as high-performance gas sensor. Mater. Sci. Semicond. Process. 134, 106035 (2021). https://doi.org/10.1016/j.mssp.2021.106035

    Article  CAS  Google Scholar 

  14. He, J., Zhao, Z., Zhang, L., Jiao, W.: Gas sensing performances of commercial carbon fibers functionalized by NiO/SnO2 composite. Semicond. Sci. Technol. 37(5), 055018 (2022). https://doi.org/10.1088/1361-6641/ac5f6b

    Article  Google Scholar 

  15. Wang, J., Wang, S.: Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022 (2019). https://doi.org/10.1016/j.jclepro.2019.04.282

    Article  CAS  Google Scholar 

  16. Chen, J., Lv, H., Bai, X., Liu, Z., He, L., Wang, J., Shi, K.: Synthesis of hierarchically porous Co3O4/Biomass carbon composites derived from MOFs and their highly NO2 gas sensing performance. Micropor. Mesopor. Mater. 321, 111108 (2021). https://doi.org/10.1016/j.micromeso.2021.111108

    Article  CAS  Google Scholar 

  17. Sun, Q., Wu, Z., Cao, B., Chen, X., Zhang, C., Shaymurat, T., Duan, H., Zhang, J., Zhang, M.: Gas sensing performance of biomass carbon materials promoted by nitrogen doping and pn junction. Appl. Surf. Sci. 592, 153254 (2022). https://doi.org/10.1016/j.apsusc.2022.153254

    Article  CAS  Google Scholar 

  18. Nyholm, N., Espallargas, N.: Functionalized carbon nanostructures as lubricant additives–a review. Carbon. 201, 1200–1228 (2023). https://doi.org/10.1016/j.carbon.2022.10.035

    Article  CAS  Google Scholar 

  19. Han, T., Nag, A., Mukhopadhyay, S.C., Xu, Y.: Carbon nanotubes and its gas-sensing applications: a review. Sensors Actuators A: Phys. 291, 107–143 (2019). https://doi.org/10.1016/j.sna.2019.03.053

    Article  CAS  Google Scholar 

  20. Lorenz, M., Almeida, L., Inacio, A.P.O.L., Júnior, F.S., Oreste, E., Dias, D.: Carbon-based materials applied to the development of chemically modified sensors: Trends to environmental applications. Electroanalysis. 35 (2023). https://doi.org/10.1002/elan.202200354

  21. Liu, B., Liu, X., Yuan, Z., Jiang, Y., Su, Y., Ma, J., Tai, H.: A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors Actuators A: Chem. 295, 86–92 (2019). https://doi.org/10.1016/j.snb.2019.05.065

    Article  CAS  Google Scholar 

  22. Su, P.G., Yu, J.H.: Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sensors Actuators A: Phys. 303, 111718 (2020). https://doi.org/10.1016/j.sna.2019.111718

    Article  CAS  Google Scholar 

  23. Ramanathan, G., Singaravelu, S., Raja, M.D., Nagiah, N., Padmapriya, P., Ruban, K., Kaveri, K., Natarajan, T., Sivagnanam, U.T., Perumal, P.T.: Fabrication and characterization of a collagen coated electrospun poly (3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv. 6(10), 7914–7922 (2016). https://doi.org/10.1039/C5RA19529B

    Article  CAS  Google Scholar 

  24. Lee, S.W., Lee, W., Hong, Y., Lee, G., Yoon, D.S.: Recent advances in carbon material-based NO2 gas sensors. Sensors Actuators A: Chem. 255, 1788–1804 (2018). https://doi.org/10.1016/j.snb.2017.08.203

    Article  CAS  Google Scholar 

  25. Li, M., Chen, T., Gooding, J.J., Liu, J.: Review of carbon and graphene quantum dots for sensing. ACS Sensors. 4(7), 1732–1748 (2019). https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  Google Scholar 

  26. Kausar, A.: Emerging trends in poly (methyl methacrylate) containing carbonaceous reinforcements—carbon nanotube, carbon black, and carbon fiber. J. Plast. Film Sheet. 36(4), 409–429 (2020). https://doi.org/10.1177/8756087920917177

    Article  CAS  Google Scholar 

  27. Wu, J., Wu, Z., Ding, H., Wei, Y., Huang, W., Yang, X., Wang, X.: Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Inter. 12(2), 2634–2643 (2020). https://doi.org/10.1021/acsami.9b18098

    Article  CAS  Google Scholar 

  28. Raya, I., Kzar, H.H., Mahmoud, Z.H., Al Ayub Ahmed, A., Ibatova, A.Z., Kianfar, E.: A review of gas sensors based on carbon nanomaterial. Carbon Lett., 1–26 (2021). https://doi.org/10.1007/s42823-021-00276-9

  29. Arduini, F., Cinti, S., Mazzaracchio, V., Scognamiglio, V., Amine, A., Moscone, D.: Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosens. Bioelectron. 156, 112033 (2020). https://doi.org/10.1016/j.bios.2020.112033

    Article  CAS  Google Scholar 

  30. Llobet, E.: Gas sensors using carbon nanomaterials: a review. Sensors Actuators A: Chem. 179, 32–45 (2013). https://doi.org/10.1016/j.snb.2012.11.014

    Article  CAS  Google Scholar 

  31. Khan, S., Ali, S., Bermak, A.: Substrate dependent analysis of printed sensors for detection of volatile organic compounds. IEEE Access. 7, 134047–134054 (2019). https://doi.org/10.1109/ACCESS.2019.2939860

    Article  Google Scholar 

  32. Shetti, N.P., Mishra, A., Basu, S., Aminabhavi, T.M.: Versatile fullerenes as sensor materials. Mater. Today Chem. 20, 100454 (2020). https://doi.org/10.1016/j.mtchem.2021.100454

    Article  CAS  Google Scholar 

  33. Xu, T., Shen, W., Huang, W., Lu, X.J.M.T.N.: Fullerene micro/nanostructures: controlled synthesis and energy applications. Mater. Today Nano. 11, 100081 (2020). https://doi.org/10.1016/j.mtnano.2020.100081

    Article  Google Scholar 

  34. Peijs, T., Kirschbaum, R., Lemstra, P.J.: A critical review of carbon fiber and related products from an industrial perspective. Adv. Indus. Eng. Polym. Res., 90–106. Kingfa (2022)

    Google Scholar 

  35. Robinson, M.T., Tung, J., Heydari, M., Gleason, K.K.: Humidity-initiated gas sensors for volatile organic compounds sensing. Adv. Funct. Mater. 31, 2101310 (2021). https://doi.org/10.1002/adfm.202101310

    Article  CAS  Google Scholar 

  36. Sacco, L., Forel, S., Florea, I., Cojocaru, C.S.: Ultra-sensitive NO2 gas sensors based on single-wall carbon nanotube field effect transistors: monitoring from ppm to ppb level. Carbon. 157, 631–639 (2020). https://doi.org/10.1016/j.carbon.2019.10.073

    Article  CAS  Google Scholar 

  37. Young, S.J., Liu, Y.H., Lin, Z.D., Ahmed, K., Shiblee, M.N.I., Romanuik, S., Khosla, A.: Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature. J. Electrochem. Soc. 167(16), 167519 (2020). https://doi.org/10.1149/1945-7111/abd1be

    Article  CAS  Google Scholar 

  38. Zhong, Y., Zhen, Z., Zhu, H.: Graphene: fundamental research and potential applications. FlatChem. 4, 20–32 (2017). https://doi.org/10.1016/j.flatc.2017.06.008

    Article  CAS  Google Scholar 

  39. Kianfar, F., Kianfar, E.: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. J. Inorg. Organomet. Polym. 29, 2176–2185 (2019). https://doi.org/10.1007/s10904-019-01177-1

    Article  CAS  Google Scholar 

  40. Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., Botiz, I.: Reduced graphene oxide today. J. Mater. Chem. C. 8(4), 1198–1224 (2020). https://doi.org/10.1039/C9TC04916A

    Article  CAS  Google Scholar 

  41. Almeida, L.S., Oreste, E.Q., Maciel, J.V., Heinemann, M.G., Dias, D.: Electrochemical devices obtained from biochar: advances in renewable and environmentally-friendly technologies applied to analytical chemistry. Trend. Environ. Anal. Chem. 26, e00089 (2020). https://doi.org/10.1016/j.teac.2020.e00089

    Article  CAS  Google Scholar 

  42. Liu, J., Xu, M., Wang, B., Zhou, Z., Wang, L.: Fluorescence sensor for detecting protamines based on competitive interactions of polyacrylic acid modified with sodium 4-amino-1-naphthalenesulfonate with protamines and aminated graphene oxide. RSC Adv. 7(3), 1432–1438 (2017). https://doi.org/10.1039/c6ra24793h

    Article  CAS  Google Scholar 

  43. Iskandar, F., Hikmah, U., Stavila, E., Aimon, A.H.: Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO). RSC Adv. 7, 52391–52397 (2017). https://doi.org/10.1039/C7RA10013B

    Article  CAS  Google Scholar 

  44. Ma, R., Tsukruk, V.V.: Seriography-guided reduction of graphene oxide biopapers for wearable sensory electronics. Adv. Funct. Mater. 27(10), 1604802 (2017). https://doi.org/10.1002/adfm.201604802

    Article  CAS  Google Scholar 

  45. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature. 442(7100), 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  46. Yan, Y., Gong, J., Chen, J., Zeng, Z., Huang, W., Pu, K., Liu, J., Chen, P.: Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 31(21), 1808283 (2019). https://doi.org/10.1002/adma.201808283

    Article  CAS  Google Scholar 

  47. Wang, X., Sun, G., Li, N., Chen, P.: Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45(8), 2239–2262 (2016). https://doi.org/10.1039/C5CS00811E

    Article  CAS  Google Scholar 

  48. Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., Sun, Z.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale. 5(24), 12272–12277 (2013). https://doi.org/10.1039/C3NR04402E

    Article  CAS  Google Scholar 

  49. Kalidoss, R., Umapathy, S., Anandan, R., Ganesh, V., Sivalingam, Y.: Comparative study on the preparation and gas sensing properties of reduced graphene oxide/SnO2 binary nanocomposite for detection of acetone in exhaled breath. Anal. Chem. 91(8), 5116–5124 (2019). https://doi.org/10.1021/acs.analchem.8b05670

    Article  CAS  Google Scholar 

  50. Chu, X., Dai, P., Liang, S., Bhattacharya, A., Dong, Y., Epifani, M.: The acetone sensing properties of ZnFe2O4-graphene quantum dots (GQDs) nanocomposites at room temperature. Phys. E: Low-dimen. Sys. Nanos. 106, 326–333 (2019). https://doi.org/10.1016/j.physe.2018.08.003

    Article  CAS  Google Scholar 

  51. Shaban, M., Ali, S., Rabia, M.: Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Tech. 8(5), 4510–4520 (2019). https://doi.org/10.1016/j.jmrt.2019.07.064

    Article  CAS  Google Scholar 

  52. Evans, G.P., Powell, M.J., Johnson, I.D., Howard, D.P., Bauer, D., Darr, J.A., Parkin, I.P.: Room temperature vanadium dioxide–carbon nanotube gas sensors made via continuous hydrothermal flow synthesis. Sensors Actuators A: Chem. 255, 1119–1129 (2018). https://doi.org/10.1016/j.snb.2017.07.152

    Article  CAS  Google Scholar 

  53. Oliveira, P.R., Kalinke, C., Gogola, J.L., Mangrich, A.S., Junior, L.H.M., Bergamini, M.F.: The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J. Electroanal. Chem. 799, 602–608 (2017). https://doi.org/10.1016/j.jelechem.2017.06.020

    Article  CAS  Google Scholar 

  54. Cha, J.S., Park, S.H., Jung, S.C., Ryu, C., Jeon, J.K., Shin, M.C., Park, Y.K.: Production and utilization of biochar: a review. J. Indus. Eng. Chem. 40, 1–15 (2016). https://doi.org/10.1016/j.jiec.2016.06.002

    Article  CAS  Google Scholar 

  55. Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Biorefin. 4(2), 160–177 (2010). https://doi.org/10.1002/bbb.198

    Article  CAS  Google Scholar 

  56. Cao, P., Cai, Y., Pawar, D., Navale, S.T., Rao, C.N., Han, S., Xu, W., Fang, M., Liu, X., Zeng, Y., Liu, W., Zhu, D., Lu, Y.: Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors. Chem. Eng. J. 401, 125491 (2020). https://doi.org/10.1016/j.cej.2020.125491

    Article  CAS  Google Scholar 

  57. Wu, J., Wu, Z., Ding, H., Wei, Y., Huang, W., Yang, X., Li, Z., Qiu, L., Wang, X.: Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors Actuators B: Chem. 305, 127445 (2020). https://doi.org/10.1016/j.snb.2019.127445

    Article  CAS  Google Scholar 

  58. Roy, N., Sinha, R., Daniel, T.T., Nemade, H.B., Mandal, T.K.: Highly sensitive room temperature CO gas sensor based on MWCNT-PDDA composite. IEEE Sensors J. 20(22), 13245–13252 (2020). https://doi.org/10.1109/JSEN.2020.3004994

    Article  CAS  Google Scholar 

  59. Ha, N.H., Thinh, D.D., Huong, N.T., Phuong, N.H., Thach, P.D., Hong, H.S.: Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 434, 1048–1054 (2018). https://doi.org/10.1016/j.apsusc.2017.11.047

    Article  CAS  Google Scholar 

  60. Navazani, S., Hassanisadi, M., Eskandari, M., Talaei, Z.: Design and evaluation of SnO2-Pt/MWCNTs hybrid system as room temperature-methane sensors. Synth. Met. 260, 116267 (2020). https://doi.org/10.1016/j.synthmet.2019.116267

    Article  CAS  Google Scholar 

  61. Hamouma, O., Kaur, N., Oukil, D., Mahajan, A., Chehimi, M.M.: Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synth. Met. 258, 116223 (2019). https://doi.org/10.1016/j.synthmet.2019.116223

    Article  CAS  Google Scholar 

  62. Zhang, D., Yin, N., Jiang, C., Xia, B.: Characterization of CuO–reduced graphene oxide sandwiched nanostructure and its hydrogen sensing characteristics. J. Mater. Sci.: Mater. Elect. 28, 2763–2768 (2017). https://doi.org/10.1007/s10854-016-5856-8

    Article  CAS  Google Scholar 

  63. Zhao, Y., Zhang, J., Wang, Y., Chen, Z.: A highly sensitive and room temperature CNTs/SnO 2/CuO sensor for H 2 S gas sensing applications. Nanos. Res. Lett. 15, 1–8 (2020). https://doi.org/10.1186/s11671-020-3265-7

    Article  CAS  Google Scholar 

  64. Norizan, M.N., Moklis, M.H., Demon, S.Z.N., Halim, N.A., Samsuri, A., Mohamad, I.S., Knight, V.F., Abdullah, N.: Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv. 10(71), 43704–43732 (2020). https://doi.org/10.1039/D0RA09438B

    Article  CAS  Google Scholar 

  65. Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small. 1(2), 180–192 (2005). https://doi.org/10.1002/smll.200400118

    Article  CAS  Google Scholar 

  66. Aroutiounian, V.M.: Gas sensors based on functionalized carbon nanotubes. J. Contemp. Phys. 50, 333–354 (2015). https://doi.org/10.3103/S1068337215040064

    Article  CAS  Google Scholar 

  67. Wang, Y., Yeow, J.T.: A review of carbon nanotubes-based gas sensors. J. Sensors. 2009, 1–24 (2009). https://doi.org/10.1155/2009/493904

    Article  CAS  Google Scholar 

  68. Peng, S., Cho, K.: Ab initio study of doped carbon nanotube sensors. Nano Lett. 3(4), 513–517 (2003). https://doi.org/10.1021/nl034064u

    Article  CAS  Google Scholar 

  69. Sayago, I., Terrado, E., Lafuente, E., Horrillo, M.C., Maser, W.K., Benito, A.M., Navarro, R., Urriolabeitia, E.P., Martinez, M.T., Gutierrez, J.: Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148(1), 15–19 (2005). https://doi.org/10.1016/j.synthmet.2004.09.013

    Article  CAS  Google Scholar 

  70. Sin, M.L.Y., Chow, G.C.T., Wong, G.M.K., Li, W.J., Leong, P.H.W., Wong, K.W.: Ultralow-power alcohol vapor sensors using chemically functionalized multiwalled carbon nanotubes. IEEE Trans. Nanotech. 6(5), 571–577 (2007). https://doi.org/10.1109/TNANO.2007.900511

    Article  Google Scholar 

  71. Khan, W., Sharma, R., Saini, P.: Carbon nanotube-based polymer composites: synthesis, properties and applications. Carbon nanotubes-current progress of their polymer composites. In: Carbon Nanotubes: Current Progress of their Polymer Composites, pp. 1–46. IntechOpen, London (2016)

    Google Scholar 

  72. Funck, A., Kaminsky, W.: Polypropylene carbon nanotube composites by in situ polymerization. Comp. Sci. Tech. 67(5), 906–915 (2007). https://doi.org/10.1016/j.compscitech.2006.01.034

    Article  CAS  Google Scholar 

  73. Ansari, N., Lone, M.Y., Shumaila Ali, J., Zulfequar, M., Husain, M., Islam, S.S., Husain, S.: Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers. J. Appl. Phys. 127(4), 044902 (2020). https://doi.org/10.1063/1.5113847

    Article  CAS  Google Scholar 

  74. Oreste, E.Q., Bulhosa, M.C.S., Gonçalves, B.L., Müller, D.G., Nascimento, N.S., Vicenti, J.R.M., Kessler, F.: Surface functionalization of recyclable polymer for application as a flexible fluorescent sensor. Surf. Topogr.: Metr. Proper. 10(2), 024001 (2022). https://doi.org/10.1088/2051-672X/ac6c3f

    Article  Google Scholar 

  75. Kumar, S., Pavelyev, V., Tripathi, N., Platonov, V., Sharma, P., Ahmad, R., Mishra, P., Khosla, A.: Recent advances in the development of carbon nanotubes based flexible sensors. J. Electrochem. Soc. 167(4), 047506 (2020). https://doi.org/10.1149/1945-7111/ab7331

    Article  CAS  Google Scholar 

  76. Xue, L., Wang, W., Guo, Y., Liu, G., Wan, P.: Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensors Actuators B: Chem. 244, 47–53 (2017). https://doi.org/10.1016/j.snb.2016.12.064

    Article  CAS  Google Scholar 

  77. Fritea, L., Banica, F., Costea, T.O., Moldovan, L., Dobjanschi, L., Muresan, M., Cavalu, S.: Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio) sensors with biomedical applications. Materials. 14(21), 6319 (2021). https://doi.org/10.3390/ma14216319

    Article  CAS  Google Scholar 

  78. Heinemann, M.G., Ruas, C.P., Dias, D.: Synthesis, characterization, and applications of Ag and Au nanoparticles in obtaining electrochemical bio/sensors. In: Sahoo, S.K., Hormozi-Nezhad, M.R. (eds.) Gold and Silver Nanoparticles, pp. 205–246. Elsevier, Amsterdam (2023)

    Chapter  Google Scholar 

  79. Kumar, H., Venkatesh, N., Bhowmik, H., Kuila, A.: Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4(2), 3765–3775 (2018). https://doi.org/10.26717/BJSTR.2018.04.001011

    Article  Google Scholar 

  80. Septiani, N.L.W., Yuliarto, B.: The development of gas sensor based on carbon nanotubes. J. Electrochem. Soc. 163(3), B97 (2016). https://doi.org/10.1149/2.0591603jes

    Article  CAS  Google Scholar 

  81. Xiao, Z., Kong, L.B., Ruan, S., Li, X., Yu, S., Li, X., Jiang, Y., Yao, Z., Ye, S., Wang, C., Zhang, T., Zhou, K., Li, S.: Recent development in nanocarbon materials for gas sensor applications. Sensors Actuators B: Chem. 274, 235–267 (2018). https://doi.org/10.1016/j.snb.2018.07.040

    Article  CAS  Google Scholar 

  82. Abdelhalim, A., Abdellah, A., Scarpa, G., Lugli, P.: Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications. Nanotechnology. 25(5), 055208 (2014). https://doi.org/10.1088/0957-4484/25/5/055208

    Article  Google Scholar 

  83. Li, X., Le Thai, M., Dutta, R.K., Qiao, S., Chandran, G.T., Penner, R.M.: Sub-6 nm palladium nanoparticles for faster, more sensitive H2 detection using carbon nanotube ropes. ACS Sensors. 2(2), 282–289 (2017). https://doi.org/10.1021/acssensors.6b00808

    Article  CAS  Google Scholar 

  84. Tang, S., Chen, W., Zhang, H., Song, Z., Li, Y., Wang, Y.: The functionalized single-walled carbon nanotubes gas sensor with Pd nanoparticles for hydrogen detection in the high-voltage transformers. Front. Chem. 8, 174 (2020). https://doi.org/10.3389/fchem.2020.00174

    Article  CAS  Google Scholar 

  85. Hussein, H.T., Kareem, M.H., Hussein, A.M.A.: Synthesis and characterization of carbon nanotube doped with zinc oxide nanoparticles CNTs-ZnO/PS as ethanol gas sensor. Optik. 248, 168107 (2021). https://doi.org/10.1016/j.ijleo.2021.168107

    Article  CAS  Google Scholar 

  86. Hannon, A., Seames, W., Li, J.: Hybrid carbon nanotubes/gold nanoparticles composites for trace nitric oxide detection over a wide range of humidity. Sensors. 22(19), 7581 (2022). https://doi.org/10.3390/s22197581

    Article  CAS  Google Scholar 

  87. Chen, Z.C., Chang, T.L., Chen, C.H., Liou, D.S., Han, T.Y., Wu, Q.X.: Flexible NO gas sensor fabricated using graphene/silver nanoparticles stacked electrode structures. Mater. Lett. 295, 129826 (2021). https://doi.org/10.1016/j.matlet.2021.129826

    Article  CAS  Google Scholar 

  88. Zou, C., Ma, D., Su, Y., Zhu, M., Zhou, B., Shao, F., Hu, N., Yang, Z., Xie, H., Zhang, Y.: Three-dimensional Au nanoparticles-decorated γ-Fe2O3@ reduced graphene oxide core-shell heterojunctions for highly sensitive room-temperature gas sensors. Ceram. Int. 48(24), 37064–37074 (2022). https://doi.org/10.1016/j.ceramint.2022.08.281

    Article  CAS  Google Scholar 

  89. Wu, J., Liang, Y., Zhou, Z., Wu, Z., Ding, H., Huang, W., Xie, X.: Three-dimensional gold nanoparticles-modified graphene hydrogel for high-sensitive NO2 and NH3 detection with enhanced resistance to humidity. Sensors Actuators B: Chem. 344, 130259 (2021). https://doi.org/10.1016/j.snb.2021.130259

    Article  CAS  Google Scholar 

  90. Wu, B., Kuang, Y., Zhang, X., Chen, J.: Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today. 6(1), 75–90 (2011). https://doi.org/10.1016/j.nantod.2010.12.008

    Article  CAS  Google Scholar 

  91. Wildgoose, G.G., Banks, C.E., Compton, R.G.: Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small. 2(2), 182–193 (2006). https://doi.org/10.1002/smll.200500324

    Article  CAS  Google Scholar 

  92. Chatterjee, S.G., Chatterjee, S., Ray, A.K., Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sensors Actuators B: Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070

    Article  CAS  Google Scholar 

  93. Dai, M., Zhao, L., Gao, H., Sun, P., Liu, F., Zhang, S., Shimanoe, K., Yamazoe, N., Lu, G.: Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors. ACS Appl. Mater. Inter. 9(10), 8919–8928 (2017). https://doi.org/10.1021/acsami.7b00805

    Article  CAS  Google Scholar 

  94. Yu, Z., Zhang, L., Wang, X., He, D., Suo, H., Zhao, C.: Fabrication of ZnO/Carbon quantum dots composite sensor for detecting NO gas. Sensors. 20(17), 4961 (2020). https://doi.org/10.3390/s20174961

    Article  CAS  Google Scholar 

  95. Kerdcharoen, T., Wongchoosuk, C.: Carbon nanotube and metal oxide hybrid materials for gas sensing. In: Semiconductor Gas Sensors, pp. 386–407. Woodhead Publishing, Cambridge (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiane Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Oliveira Lopes Inacio, A.P., Oreste, E.Q., Dias, D. (2023). Functionalized Carbon Nanostructures for Gas Sensing Applications. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics