Skip to main content

An Illustrative Application: Fibers and Fibrous Composites

  • Chapter
  • First Online:
Fiber Bundles

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Do not confuse 22 in 22 × 92 that corresponds to 22 rows determined by the ineffective length (where 92 is fibers/columns of fibers embedded in the specimen) with the 22 intervals in the partition. They are different entities.

References

  • Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fibre and bundle strength in hybrid composites. In T. Hayashi, K. Kawata, & S. Umekawa (Eds.) Progress in science and engineering of composites (pp. 1129–1136). ICCM-IV.

    Google Scholar 

  • Black, C. M., Durham, S. D., & Padgett, W. J. (1990). Parameter estimation for a new distribution for the strength of brittle fibers: A simulation study. Communications in Statistics–Simulation and Computation, 19, 809–825.

    Article  MATH  Google Scholar 

  • Crowder, M. J., Kimber, A. C., Smith, R. L., & Sweeting, T. J. (1991). Statistical analysis of reliability data. Chapman and Hall.

    Book  Google Scholar 

  • Durham, S. D., & Padgett, W. J. (1991). A probabilistic stress-strength model and its application to fatigue failure in gun barrels. Journal of Statistical Planning and Inference, 29, 67–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Durham, S. D., & Padgett, W. J. (1997). Cumulative damage models for system failure with application to carbon fibers and composites. Technometrics, 39(1), 34–44.

    Article  MATH  Google Scholar 

  • Grego, J., Lynch, J., Li, S., & Sethuraman, J. (2014). Partition-based priors and multiple event censoring: An analysis of Rosen’s fibrous composite experiment. Technometrics, 56(3), 359–371.

    Article  MathSciNet  Google Scholar 

  • Li, S., Gleaton, J., & Lynch, J. (2019). What is the shape of a bundle? An analysis of Rosen’s fibrous composites experiments using the chain-of-bundles model. Scandinavian Journal of Statistics, 46(1), 59–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Padgett, W. J., Durham, S. D., & Mason, A. M. (1995). Weibull analysis of the strength of carbon fibers using linear and power law models for the length effect. Journal of Composite Materials, 29(14), 1873–1884.

    Article  Google Scholar 

  • Rosen, B. (1965). Mechanics of composite strengthening. In Fibre composite materials (pp. 37–75). American Society of Metals. Chapter 3.

    Google Scholar 

  • Rosen, B. W. (1964). Tensile failure of fibrous composites. AIAA Journal, 2(11), 1985–1991.

    Article  Google Scholar 

  • Sethuraman, J., & Hollander, M. (2009). Nonparametric Bayes estimation in repair models. Journal of Statistical Planning and Inference, 139, 1722–1733.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, R. L. (1991). Weibull regression models for reliability data. Reliability Engineering & System Safety, 34(1), 55–76.

    Article  Google Scholar 

  • Taylor, H. M. (1987). A model for the failure process of semicrystalline polymer materials under static fatigue. Probability in the Engineering and Informational Sciences, 1(2), 133–162.

    Article  MATH  Google Scholar 

  • Watson, A. S., & Smith, R. L. (1985). An examination of statistical theories for fibrous materials in the light of experimental data. Journal of Materials Science, 20, 3260–3270.

    Article  Google Scholar 

  • Zhao, F., & Takeda, N. (2000). Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. part I: Experiment results. Composites Part A: Applied Science and Manufacturing, 31(11), 1203–1214.

    Article  Google Scholar 

  • Zweben, C., & Rosen, B. (1970). A statistical theory of material strength with application to composite materials. Journal of the Mechanics and Physics of Solids, 18(3), 189–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James U. Gleaton .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gleaton, J.U., Han, D., Lynch, J.D., Ng, H.K.T., Ruggeri, F. (2022). An Illustrative Application: Fibers and Fibrous Composites. In: Fiber Bundles. Springer, Cham. https://doi.org/10.1007/978-3-031-14797-5_7

Download citation

Publish with us

Policies and ethics