Skip to main content

Introduction and Preliminaries

  • Chapter
  • First Online:
Fiber Bundles

Abstract

Over the last sixty years, fiber bundle models (FBMs) have played an indispensable role in “Modelling Critical and Catastrophic Phenomena.” The phrase in quotes is part of the title of a book on FBM (Bhattacharyya & Chakrabarti, 2006). This book consists of several tutorial introductory chapters, one of which is by Kun et al. (2006) entitled “Extensions of fibre bundle models,” where they state that “The fibre bundle model is one of the most important theoretical approaches to investigate the fracture and breakdown (BD) of disordered media extensively used both by the engineering and physics community.” The chapters after the introductory ones are specialized applications of the FBM in the geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bažant, Z. P., & Le, J.-L. (2017). Probabilistic mechanics of quasibrittle structures—strength, lifetime, and size effect. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bhattacharyya, P., & Chakrabarti, B. K. (2006). Modelling critical and catastrophic phenomena in geoscience—a statistical physics approach. Springer.

    Book  MATH  Google Scholar 

  • Boufass, S., Hader, A., Tanasehte, M., Sbiaai, H., Achik, I., & Boughaleb, Y. (2020). Modelling of composite materials energy by fiber bundle model. The European Physical Journal Applied Physics, 92(1), 10401.

    Article  Google Scholar 

  • Cohen, D., Schwarz, M., & Or, D. (2011). An analytical fiber bundle model for pullout mechanics of root bundles. Journal of Geophysical Research: Earth Surface, 116, F03010.

    Article  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Daniels, H. E. (1945). The statistical theory of the strength of bundles of threads I. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 183(995), 405–435.

    MathSciNet  MATH  Google Scholar 

  • Ebrahimi, N., McCullough, K., & Xiao, Z. (2013a). Reliability of sensors based on nanowire networks. IIE Transactions, 45(2), 215–228.

    Article  Google Scholar 

  • Ebrahimi, N., McCullough, K., & Xiao, Z. (2013b). Reliability of sensors based on nanowire networks with either an equilateral triangle lattice or a hexagonal lattice structure. IEEE Transactions on Nanotechnology, 12(1), 81–95.

    Article  Google Scholar 

  • Hansen, A., Hemmer, P. C., & Pradhan, S. (2015). The fiber bundle model: Modeling failure in materials. Wiley-VCH, Weinheim.

    Book  Google Scholar 

  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Kun, F., Raischel, F., Hidalgo, R. C., & Herrmann, H. J. (2006). Extensions of fibre bundle models. In Modelling critical and catastrophic phenomena in geoscience (pp. 57–92). Springer.

    Google Scholar 

  • Leckey, K., Müller, C. H., Szugat, S., & Maurer, R. (2020). Prediction intervals for load-sharing systems in accelerated life testing. Quality and Reliability Engineering International, 36(6), 1895–1915.

    Article  Google Scholar 

  • Lehmann, P., & Or, D. (2012). Hydromechanical triggering of landslides: From progressive local failures to mass release. Water Resources Research, 48(3), W03535.

    Article  Google Scholar 

  • Li, S., Gleaton, J., & Lynch, J. (2019). What is the shape of a bundle? An analysis of Rosen’s fibrous composites experiments using the chain-of-bundles model. Scandinavian Journal of Statistics, 46(1), 59–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Mishnaevsky, L. (2013). Micromechanical modelling of wind turbine blade materials. In P. Brøndsted, & R. P. Nijssen (Eds.), Advances in wind turbine blade design and materials (pp. 298–324). Woodhead Publishing Series in Energy.

    Google Scholar 

  • Orgéas, L., Dumont, P., & Corre, S. L. (2015). Rheology of highly concentrated fiber suspensions. In F. Chinesta, & G. Ausias (Eds.), Rheology of non-spherical particle suspensions (pp. 119–166). Elsevier.

    Google Scholar 

  • Pugno, N. (2014). A review on the design of superstrong carbon nanotube or graphene fibers and composites. In M. J. Schulz, V. N. Shanov, & Z. Yin (Eds.), Nanotube superfiber materials (pp. 495–518). William Andrew Publishing.

    Google Scholar 

  • Reiweger, I., Schweizer, J., Dual, J., & Herrmann, H. J. (2009). Modelling snow failure with a fibre bundle model. Journal of Glaciology, 55(194), 997–1002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James U. Gleaton .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gleaton, J.U., Han, D., Lynch, J.D., Ng, H.K.T., Ruggeri, F. (2022). Introduction and Preliminaries. In: Fiber Bundles. Springer, Cham. https://doi.org/10.1007/978-3-031-14797-5_1

Download citation

Publish with us

Policies and ethics