Skip to main content

The Natural History of Crohn Disease in Children

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease
  • 640 Accesses

Abstract

There are many factors that determine the natural history of Crohn disease. Considerations include disease activity over time, evolution from an inflammatory phenotype to fibrostenotic or penetrating disease, development of corticosteroid dependence, need for surgery, and disease recurrence following bowel resection. Factors that are unique in the pediatric patient include disturbances of growth and development and differences in childhood quality of life measures. The impact of genotypic variants on phenotypic expression over time is only beginning to be elucidated. Without long-term data on untreated patients or placebo-controlled studies in children to draw upon, the true natural history of pediatric Crohn disease is left to be approximated by the disease course in individuals treated only with corticosteroid and/or mesalamine. With an evolving armamentarium of medical therapies available, altering the natural history to prevent complications related to both the disease and chronic corticosteroid exposure has become one of the primary targets of therapy today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anti-TNF:

Antitumor necrosis factor-alpha

CD:

Crohn disease

ECCDS:

European Cooperative Crohn Disease Study

HRQOL:

Health-related quality of life

IBD:

Inflammatory bowel disease

NCCDS:

National Cooperative Crohn Disease Study

SIR:

Standardized Incidence Ratio

References

  1. Summers RW, Switz DM, Sessions JT Jr, et al. National cooperative Crohn’s disease study: results of drug treatment. Gastroenterology. 1979;77:847–69.

    CAS  PubMed  Google Scholar 

  2. Malchow H, Ewe K, Brandes JW, et al. European cooperative Crohn’s disease study (ECCDS): results of drug treatment. Gastroenterology. 1984;86:249–66.

    CAS  PubMed  Google Scholar 

  3. Markowitz J, Grancher K, Kohn N, et al. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn’s disease. Gastroenterology. 2000;119:895–902.

    CAS  PubMed  Google Scholar 

  4. Romano C, Cucchiara S, Barabino A, et al. Usefulness of omega-3 fatty acid supplementation in addition to mesalazine in maintaining remission in pediatric Crohn’s disease: a double-blind, randomized, placebo-controlled study. World J Gastroenterol. 2005;11:7118–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Strisciuglio C, Auricchio R, Martinelli M, et al. Autophagy genes variants and paediatric Crohn’s disease phenotype: a single-centre experience. Dig Liver Dis. 2014;46:512–7.

    CAS  PubMed  Google Scholar 

  6. Langholz E, Munkholm P, Krasilnikoff PA, Binder V. Inflammatory bowel diseases with onset in childhood. Clinical features, morbidity, and mortality in a regional cohort. Scand J Gastroenterol. 1997;32:139–47.

    CAS  PubMed  Google Scholar 

  7. Munkholm P, Langholz E, Davidsen M, Binder V. Disease activity courses in a regional cohort of Crohn’s disease patients. Scand J Gastroenterol. 1995;30:699–706.

    CAS  PubMed  Google Scholar 

  8. Loftus EV Jr, Schoenfeld P, Sandborn WJ. The epidemiology and natural history of Crohn’s disease in population-based patient cohorts from North America: a systematic review. Aliment Pharmacol Ther. 2002;16:51–60.

    PubMed  Google Scholar 

  9. Pigneur B, Seksik P, Viola S, et al. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. Inflamm Bowel Dis. 2010;16:953–61.

    PubMed  Google Scholar 

  10. Sharma Y, Bousvaros A, Liu E, Stern JB. Natural History of Children with Mild Crohn’s Disease. World J Gastroenterol. 2019;25:4235–45.

    PubMed  PubMed Central  Google Scholar 

  11. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.

    PubMed  Google Scholar 

  12. de Bie CI, Paerregaard A, Kolacek S, et al. Disease phenotype at diagnosis in pediatric Crohn’s disease: 5-year analyses of the EUROKIDS Registry. Inflamm Bowel Dis. 2013;19:378–85.

    PubMed  Google Scholar 

  13. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19(Suppl. A):5A–36A.

    PubMed  Google Scholar 

  14. Van Limbergen J, Russell RK, Drummond HE, et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–22.

    PubMed  Google Scholar 

  15. Abraham BP, Mehta S, El-Serag HB. Natural history of pediatric-onset inflammatory bowel disease: a systematic review. J Clin Gastroenterol. 2012;46:581–9.

    PubMed  PubMed Central  Google Scholar 

  16. Dubinsky MC, Kugathasan S, Mei L, et al. Increased immune reactivity predicts aggressive complicating Crohn’s disease in children. Clin Gastroenterol Hepatol. 2008;6:1105–11.

    PubMed  PubMed Central  Google Scholar 

  17. Cosnes J, Cattan S, Blain A, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8:244–50.

    PubMed  Google Scholar 

  18. Tarrant KM, Barclay ML, Frampton CM, Gearry RB. Perianal disease predicts changes in Crohn’s disease phenotype-results of a population-based study of inflammatory bowel disease phenotype. Am J Gastroenterol. 2008;103:3082–93.

    PubMed  Google Scholar 

  19. Eidelwein AP, Thompson R, Fiorino K, et al. Disease presentation and clinical course in black and white children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44:555–60.

    PubMed  Google Scholar 

  20. Kugathasan S, Collins N, Maresso K, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2:1003–9.

    CAS  PubMed  Google Scholar 

  21. Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11:955–64.

    PubMed  Google Scholar 

  22. Vermeire S, Pierik M, Hlavaty T, et al. Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. Gastroenterology. 2005;129:1845–53.

    CAS  PubMed  Google Scholar 

  23. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    PubMed  PubMed Central  Google Scholar 

  24. Shaoul R, Karban A, Reif S, et al. Disease behavior in children with Crohn’s disease: the effect of disease duration, ethnicity, genotype, and phenotype. Dig Dis Sci. 2009;54:142–50.

    PubMed  Google Scholar 

  25. Wei SC, Tan YY, Weng MT, et al. SLCO3A1, A novel Crohn’s disease-associated gene, regulates nf-kappaB activity and associates with intestinal perforation. PLoS One. 2014;9:e100515.

    PubMed Central  Google Scholar 

  26. Dubinsky MC, Lin YC, Dutridge D, et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7.

    PubMed  PubMed Central  Google Scholar 

  27. Kugathasan S, Denson LA, Walters TD, et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort. Lancet. 2017;29:1710–8.

    Google Scholar 

  28. Wu J, Lubman DM, Kugathasan S, et al. Serum protein biomarkers of fibrosis aid in risk stratification of future stricturing complications in pediatric Crohn’s disease. Am J Gastroenterol. 2019;114:777–85.

    PubMed  PubMed Central  Google Scholar 

  29. Lindoso L, Mondal K, Venkateswaran S, et al. The effect of early life environmental exposures on disease phenotype and clinical course of Crohn’s disease in children. Am J Gastroenterol. 2018;113:1524–9.

    CAS  PubMed  Google Scholar 

  30. Kirschner BS. Growth and development in chronic inflammatory bowel disease. Acta Paediatr Scand Suppl. 1990;366:98–104.

    CAS  PubMed  Google Scholar 

  31. Markowitz J, Grancher K, Rosa J, et al. Growth failure in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1993;16:373–80.

    CAS  PubMed  Google Scholar 

  32. Kanof ME, Lake AM, Bayless TM. Decreased height velocity in children and adolescents before the diagnosis of Crohn’s disease. Gastroenterology. 1988;95:1523–7.

    CAS  PubMed  Google Scholar 

  33. Sanderson IR, Udeen S, Davies PS, et al. Remission induced by an elemental diet in small bowel Crohn’s disease. Arch Dis Child. 1987;62:123–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Turner D, Grossman AB, Rosh J, et al. Methotrexate following unsuccessful thiopurine therapy in pediatric Crohn’s disease. Am J Gastroenterol. 2007;102:2804–12.

    CAS  PubMed  Google Scholar 

  35. Hyams J, Crandall W, Kugathasan S, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132:863–73.

    CAS  PubMed  Google Scholar 

  36. Malik S, Wong SC, Bishop J, et al. Improvement in growth of children with Crohn disease following anti-TNF-alpha therapy can be independent of pubertal progress and glucocorticoid reduction. J Pediatr Gastroenterol Nutr. 2011;52:31–7.

    CAS  PubMed  Google Scholar 

  37. Cameron FL, Altowati MA, Rogers P, et al. Disease status and pubertal stage predict improved growth in antitumor necrosis factor therapy for pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2017;64:47–55.

    CAS  PubMed  Google Scholar 

  38. Walters TD, Faubion WA, Griffiths AM, et al. Growth improvement with adalimumab treatment in children with moderately to severely active Crohn’s Disease. Inflamm Bowel Dis. 2017;23:967–75.

    PubMed  Google Scholar 

  39. Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeis AR. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001;121:255–60.

    CAS  PubMed  Google Scholar 

  40. Munkholm P, Langholz E, Davidsen M, Binder V. Frequency of glucocorticoid resistance and dependency in Crohn’s disease. Gut. 1994;35:360–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Markowitz J, Hyams J, Mack D, et al. Corticosteroid therapy in the age of infliximab: acute and 1-year outcomes in newly diagnosed children with Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:1124–9.

    CAS  PubMed  Google Scholar 

  42. Fumery M, Pariente B, Sarter H, et al. Long-term outcome of pediatric-onset Crohn’s Disease: A population-based cohort study. Dig Liver Dis. 2019;51:496–502.

    PubMed  Google Scholar 

  43. Jakobsen C, Munkholm P, Paerregaard A, Wewer V. Steroid dependency and pediatric inflammatory bowel disease in the era of immunomodulators-a population-based study. Inflamm Bowel Dis. 2011;17:1731–40.

    PubMed  Google Scholar 

  44. Walters TD, Kim MO, Denson LA, et al. Increased effectiveness of early therapy with anti-tumor necrosis factor alpha vs an immunomodulatory in children with Crohn’s Disease. Gastroenterology. 2014;146:383–91.

    CAS  PubMed  Google Scholar 

  45. Farmer RG, Michener WM. Prognosis of Crohn’s disease with onset in childhood or adolescence. Dig Dis Sci. 1979;24:752–7.

    CAS  PubMed  Google Scholar 

  46. Ferguson A, Sedgwick DM. Juvenile-onset inflammatory bowel disease: predictors of morbidity and health status in early adult life. J R Coll Physicians Lond. 1994;28:220–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Griffiths AM. Factors that influence the postoperative recurrence of Crohn’s disease in childhood. In: Hadziselimovic F, Herzog B, Burgin-Wolff A, editors. Inflammatory bowel disease and coeliac disease in children. Boston: Kluwer Academic Publishers; 1990. p. 131–6.

    Google Scholar 

  48. Besnard M, Jaby O, Mougenot JF, et al. Postoperative outcome of Crohn’s disease in 30 children. Gut. 1998;43:634–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gupta N, Cohen SA, Bostrom AG, et al. Risk factors for initial surgery in pediatric patients with Crohn’s disease. Gastroenterology. 2006;130:1069–77.

    PubMed  Google Scholar 

  50. Schaefer ME, Machan JT, Kawatu D, et al. Factors that determine risk for surgery in pediatric patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2010;8:789–94.

    PubMed  Google Scholar 

  51. Dubinsky MC, Kugathasan S, Kwon S, et al. Multi-dimensional prognostic risk assessment identifies association between IL12B variation and surgery in Crohn’s disease. Inflamm Bowel Dis. 2013;19:1662–70.

    PubMed  Google Scholar 

  52. Cosnes J, Nion-Larmurier I, Beaugerie L, Afchain P, et al. Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut. 2005;54:237–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramadas AV, Gunesh S, Thomas GA, et al. Natural history of Crohn’s disease in a population-based cohort from Cardiff (1986–2003): a study of changes in medical treatment and surgical resection rates. Gut. 2010;59:1200–6.

    CAS  PubMed  Google Scholar 

  54. Picco MF, Zubiaurre I, Adluni M, et al. Immunomodulators are associated with a lower risk of first surgery among patients with non-penetrating non-stricturing Crohn’s disease. Am J Gastroenterol. 2009;104:2754–9.

    CAS  PubMed  Google Scholar 

  55. Domenech E, Zabana Y, Garcia-Planella E, et al. Clinical outcome of newly diagnosed Crohn’s disease: a comparative, retrospective study before and after infliximab availability. Aliment Pharmacol Ther. 2010;31:233–9.

    CAS  PubMed  Google Scholar 

  56. Pedersen N, Duricova D, Lenicek M, et al. Infliximab dependency is related to decreased surgical rates in adult Crohn’s disease patients. Eur J Gastroenterol Hepatol. 2010;22:1196–203.

    CAS  PubMed  Google Scholar 

  57. Rutgeerts P, Feagan BG, Lichtenstein GR, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology. 2004;126:402–13.

    CAS  PubMed  Google Scholar 

  58. Lichtenstein GR, Yan S, Bala M, et al. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology. 2005;128:862–9.

    CAS  PubMed  Google Scholar 

  59. Duricova D, Pedersen N, Lenicek M, et al. Infliximab dependency in children with Crohn’s disease. Aliment Pharmacol Ther. 2009;29:792–9.

    CAS  PubMed  Google Scholar 

  60. Zitomersky NL, Atkinson BJ, Fournier K, et al. Antibodies to infliximab are associated with lower infliximab levels and increased likelihood of surgery in pediatric IBD. Inflamm Bowel Dis. 2015;21:307–14.

    PubMed  Google Scholar 

  61. Rutgeerts P, Geboes K, Vantrappen G, et al. Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990;99:956–63.

    CAS  PubMed  Google Scholar 

  62. Becker JM. Surgical therapy for ulcerative colitis and Crohn’s disease. Gastroenterol Clin North Am. 1999;28:371–90.

    CAS  PubMed  Google Scholar 

  63. Chardavoyne R, Flint GW, Pollack S, Wise L. Factors affecting recurrence following resection for Crohn’s disease. Dis Colon Rectum. 1986;29:495–502.

    CAS  PubMed  Google Scholar 

  64. Brignola C, Cottone M, Pera A, et al. Mesalamine in the prevention of endoscopic recurrence after intestinal resection for Crohn’s disease. Italian Cooperative Study Group. Gastroenterology. 1995;108:345–9.

    CAS  PubMed  Google Scholar 

  65. Caprilli R, Andreoli A, Capurso L, et al. Oral mesalazine (5-aminosalicylic acid; Asacol) for the prevention of post-operative recurrence of Crohn’s disease. Aliment Pharmacol Ther. 1994;8:35–43.

    CAS  PubMed  Google Scholar 

  66. Rutgeerts P, Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology. 1995;108:1617–21.

    CAS  PubMed  Google Scholar 

  67. Rutgeerts P, Van Assche G, Vermeire S, et al. Ornidazole for prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2005;128:856–61.

    CAS  PubMed  Google Scholar 

  68. Hanauer SB, Korelitz BI, Rutgeerts P, et al. Postoperative maintenance of Crohn’s disease remission with 6-mercaptopurine, mesalamine, or placebo: a 2-year trial. Gastroenterology. 2004;127:723–9.

    CAS  PubMed  Google Scholar 

  69. Abdelaal K, Jaffray B. Colonic disease site and perioperative complications predict need for later intestinal interventions following intestinal resection in Pediatric Crohn’s disease. J Pediatr Surg. 2016;51:272–6.

    PubMed  Google Scholar 

  70. Diederen K, de Ridder L, van Rheenen P, et al. Complications and disease recurrence after primary ileocecal resection in pediatric Crohn’s disease: a multicenter cohort analysis. Inflamm Bowel Dis. 2017;23:272–82.

    PubMed  Google Scholar 

  71. Ardizzone S, Maconi G, Sampietro GM, et al. Azathioprine and mesalamine for prevention of relapse after conservative surgery for Crohn’s disease. Gastroenterology. 2004;127:730–40.

    CAS  PubMed  Google Scholar 

  72. Regueiro M, Schraut W, Baidoo L, et al. Infliximab prevents Crohn’s disease recurrence after ileal resection. Gastroenterology. 2009;136(441–50):e1.

    Google Scholar 

  73. Carla-Moreau A, Paul S, Roblin X, et al. Prevention and treatment of postoperative Crohn’s disease recurrence with anti-TNF therapy: a meta-analysis of controlled trials. Dig Liver Dis. 2015;47:191–6.

    CAS  PubMed  Google Scholar 

  74. Eros A, Farkas N, Hegyi P, et al. Anti-TNF agents are the best choice in preventing postoperative Crohn’s disease: A meta-analysis. Dig Liver Dis. 2019;51:1086–95.

    CAS  PubMed  Google Scholar 

  75. El-Matary W, Nugent Z, Bernstein CN, Singh H. Long-term cancer risk in patients with pediatric-onset inflammatory bowel diseases in the Canadian population. Gastroenterology. 2020;159:386–7.

    PubMed  Google Scholar 

  76. Malham M, Jakobsen C, Paerregaard A, et al. Aliment Pharmacol Ther. 2019;50:33–9.

    PubMed  Google Scholar 

  77. Hyams JS, Dubinsky MC, Baldassano RN, et al. Infliximab is not associated with increased risk of malignancy or hemophagocytic lymphohistiocytosis in pediatric patients with inflammatory bowel disease. Gastroenterology. 2017;152:1901–14.

    PubMed  Google Scholar 

  78. Ekbom A, Helmick C, Zack M, Adami HO. Increased risk of large-bowel cancer in Crohn’s disease with colonic involvement. Lancet. 1990;336:357–9.

    CAS  PubMed  Google Scholar 

  79. Mellemkjaer L, Johansen C, Gridley G, et al. Crohn’s disease and cancer risk (Denmark). Cancer Causes Control. 2000;11:145–50.

    CAS  PubMed  Google Scholar 

  80. Jess T, Loftus EV Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota. Gastroenterology. 2006;130:1039–46.

    PubMed  Google Scholar 

  81. Ashworth LA, Billett A, Mitchell P, et al. Lymphoma risk in children and young adults with inflammatory bowel disease: analysis of a large single-center cohort. Inflamm Bowel Dis. 2012;18:838–43.

    PubMed  Google Scholar 

  82. Lewis JD, Bilker WB, Brensinger C, et al. Inflammatory bowel disease is not associated with an increased risk of lymphoma. Gastroenterology. 2001;121:1080–7.

    CAS  PubMed  Google Scholar 

  83. Otley A, Smith C, Nicholas D, et al. The IMPACT questionnaire: a valid measure of health-related quality of life in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2002;35:557–63.

    PubMed  Google Scholar 

  84. Otley AR, Griffiths AM, Hale S, et al. Health-related quality of life in the first year after a diagnosis of pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:684–91.

    PubMed  Google Scholar 

  85. Rabbett H, Elbadri A, Thwaites R, et al. Quality of life in children with Crohn’s disease. J Pediatr Gastroenterol Nutr. 1996;23:528–33.

    CAS  PubMed  Google Scholar 

  86. Akobeng AK, Suresh-Babu MV, Firth D, Miller V, Mir P, Thomas AG. Quality of life in children with Crohn’s disease: a pilot study. J Pediatr Gastroenterol Nutr. 1999;28:S37–9.

    CAS  PubMed  Google Scholar 

  87. Moody G, Eaden JA, Mayberry JF. Social implications of childhood Crohn’s disease. J Pediatr Gastroenterol Nutr. 1999;28:S43–5.

    CAS  PubMed  Google Scholar 

  88. Ferguson A, Sedgwick DM, Drummond J. Morbidity of juvenile onset inflammatory bowel disease: effects on education and employment in early adult life. Gut. 1994;35:665–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Loftus EV, Feagan BG, Colombel JF, et al. Effects of adalimumab maintenance therapy on health-related quality of life of patients with Crohn’s disease: patient-reported outcomes of the CHARM trial. Am J Gastroenterol. 2008;103:3132–41.

    PubMed  Google Scholar 

  90. Louis E, Lofberg R, Reinisch W, et al. Adalimumab improves patient-reported outcomes and reduces indirect costs in patients with moderate to severe Crohn’s disease: results from the CARE trial. J Crohns Colitis. 2013;7:34–43.

    PubMed  Google Scholar 

  91. Gourdonneau A, Bruneau L, Ruemmele FM, et al. Clinical remission and psychological management are major issues for the quality of life in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2020; https://doi.org/10.1097/MPG.0000000000002865.

  92. De Carlo C, Bramuzzo M, Canaletti C, et al. The role of distress and pain catastrophizing on the health-related quality of life of children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2019;69:e99–104.

    PubMed  Google Scholar 

  93. Gray WN, Boyle SL, Graef DM, et al. Health-related quality of life in youth with Crohn disease: role of disease activity and parenting stress. J Pediatr Gastroenterol Nutr. 2015;60:749–53.

    PubMed  PubMed Central  Google Scholar 

  94. Bramuzzo M, De Carlo C, Arrigo S, et al. Parental psychological factors and quality of life of children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2020;70:211–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Sahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahn, B., Markowitz, J. (2023). The Natural History of Crohn Disease in Children. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics