Skip to main content

Therapeutic Drug Monitoring in Pediatric Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

Therapeutic drug monitoring (TDM) is the clinical practice of measuring drug concentrations to attain a targeted serum concentration and thus optimizing individual dosage regimens. TDM has emerged as a necessary mechanism to enhance drug efficacy to achieve optimal outcomes. Examples include the well-established relationship of the genetic variability of thiopurine metabolism driven by the thiopurine S-methyltransferase (TPMT) pathway, and data supporting the pharmacokinetic variability and immunogenicity with anti-tumor necrosis factor (TNF) therapies. In this chapter, we review the data describing the relationship between drug concentrations and outcomes. The effect of anti-drug antibodies on drug efficacy and toxicity has been established. Furthermore, we describe different assays which are used in measuring these drug and antibody concentrations. An algorithm is proposed for clinical practitioners to utilize TDM in the patients losing clinical response to anti-TNF therapy. The limited data around drug and antibody concentrations for vedolizumab and ustekinumab and relation to outcomes are introduced. A proactive, rather than reactive, approach to TDM of anti-TNF agents is supported by emerging data and will provide practitioners with the tools needed to optimally treat young IBD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43(4):329–39.

    CAS  PubMed  Google Scholar 

  2. de Boer NK, van Bodegraven AA, Jharap B, de Graaf P, Mulder CJ. Drug insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Clin Pract Gastroenterol Hepatol. 2007;4(12):686–94.

    PubMed  Google Scholar 

  3. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32(5):651–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuffari C, Theoret Y, Latour S, Seidman G. 6-mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut. 1996;39(3):401–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118(4):705–13.

    CAS  PubMed  Google Scholar 

  6. Pozler O, Chladek J, Maly J, et al. Steady-state of azathioprine during initiation treatment of pediatric inflammatory bowel disease. J Crohns Colitis. 2010;4(6):623–8.

    CAS  PubMed  Google Scholar 

  7. Grossman AB, Noble AJ, Mamula P, Baldassano RN. Increased dosing requirements for 6-mercaptopurine and azathioprine in inflammatory bowel disease patients six years and younger. Inflamm Bowel Dis. 2008;14(6):750–5.

    PubMed  Google Scholar 

  8. Ooi CY, Bohane TD, Lee D, Naidoo D, Day AS. Thiopurine metabolite monitoring in paediatric inflammatory bowel disease. Aliment Pharmacol Ther. 2007;25(8):941–7.

    CAS  PubMed  Google Scholar 

  9. Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130(4):1047–53.

    CAS  PubMed  Google Scholar 

  10. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118(6):1025–30.

    CAS  PubMed  Google Scholar 

  11. Roblin X, Peyrin-Biroulet L, Phelip JM, Nancey S, Flourie B. A 6-thioguanine nucleotide threshold level of 400 pmol/8 x 10(8) erythrocytes predicts azathioprine refractoriness in patients with inflammatory bowel disease and normal TPMT activity. Am J Gastroenterol. 2008;103(12):3115–22.

    CAS  PubMed  Google Scholar 

  12. Dubinsky MC, Yang H, Hassard PV, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122(4):904–15.

    CAS  PubMed  Google Scholar 

  13. Gearry RB, Day AS, Barclay ML, Leong RW, Sparrow MP. Azathioprine and allopurinol: a two-edged interaction. J Gastroenterol Hepatol. 2010;25:653–5.

    CAS  PubMed  Google Scholar 

  14. Hyams J, Crandall W, Kugathasan S, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology. 2007;132(3):863–73; quiz 1165-1166.

    CAS  PubMed  Google Scholar 

  15. Hyams J, Damaraju L, Blank M, et al. Induction and maintenance therapy with infliximab for children with moderate to severe ulcerative colitis. Clin Gastroenterol Hepatol. 2012;10(4):391–399.e391.

    CAS  PubMed  Google Scholar 

  16. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn’s disease. Aliment Pharmacol Ther. 2011;33(9):987–95.

    CAS  PubMed  Google Scholar 

  17. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    CAS  PubMed  Google Scholar 

  18. Maser EA, Villela R, Silverberg MS, Greenberg GR. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4(10):1248–54.

    CAS  PubMed  Google Scholar 

  19. Bortlik M, Duricova D, Malickova K, et al. Infliximab trough levels may predict sustained response to infliximab in patients with Crohn’s disease. J Crohns Colitis. 2013;7(9):736–43.

    PubMed  Google Scholar 

  20. Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59(1):49–54.

    CAS  PubMed  Google Scholar 

  21. Reinisch W, Sandborn WJ, Rutgeerts P, et al. Long-term infliximab maintenance therapy for ulcerative colitis: the ACT-1 and -2 extension studies. Inflamm Bowel Dis. 2012;18(2):201–11.

    PubMed  Google Scholar 

  22. Kennedy NA, Heap GA, Green HD, et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: a prospective, multicentre, cohort study. Lancet Gastroenterol Hepatol. 2019;4(5):341–53.

    PubMed  Google Scholar 

  23. Colombel JF, Sandborn WJ, Allez M, et al. Association between plasma concentrations of certolizumab pegol and endoscopic outcomes of patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12(3):423–31.

    CAS  PubMed  Google Scholar 

  24. Roblin X, Marotte H, Rinaudo M, et al. Association between pharmacokinetics of adalimumab and mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2014;12(1):80–4.

    CAS  PubMed  Google Scholar 

  25. Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 146(1):96–109.e101.

    Google Scholar 

  26. Murthy SKD, Seow CH, et al. Association of serum infliximab and antibodies to infliximab to long-term clinical outcome in acute ulcerative colitis. Gastroenterol Hepatol. 2012;8(8).:S5, 12.

    Google Scholar 

  27. Vande Casteele N, Khanna R, Levesque BG, et al. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn’s disease. Gut. 2015;64(10):1539–45.

    CAS  PubMed  Google Scholar 

  28. Singh N, Rosenthal CJ, Melmed GY, et al. Early infliximab trough levels are associated with persistent remission in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(10):1708–13.

    PubMed  Google Scholar 

  29. Cornillie F, Hanauer SB, Diamond RH, et al. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: a retrospective analysis of the ACCENT I trial. Gut. 2014;

    Google Scholar 

  30. Yarur AJ, Kanagala V, Stein DJ, et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment Pharmacol Ther. 2017;45(7):933–40.

    CAS  PubMed  Google Scholar 

  31. van Hoeve K, Dreesen E, Hoffman I, et al. Higher infliximab trough levels are associated with better outcome in paediatric patients with inflammatory bowel disease. J Crohns Colitis. 2018;12(11):1316–25.

    PubMed  Google Scholar 

  32. Ungar B, Glidai Y, Yavzori M, et al. Association between infliximab drug and antibody levels and therapy outcome in pediatric inflammatory bowel diseases. J Pediatr Gastroenterol Nutr. 2018;67(4):507–12.

    CAS  PubMed  Google Scholar 

  33. El-Matary WWT, Huynh HQ, deBruyn J, Mack DR, Jacobson K, Sherlock ME, Church P, Wine E, Carroll MW, Benchimol EI, Lawrence S, Griffiths AM. Higher postinduction infliximab serum trough levels are associated with healing of fistulizing perianal Crohn’s disease in children. Inflamm Bowel Dis. 2019;25(1):150–5.

    PubMed  Google Scholar 

  34. Buhl S, Dorn-Rasmussen M, Brynskov J, et al. Therapeutic thresholds and mechanisms for primary non-response to infliximab in inflammatory bowel disease. Scand J Gastroenterol. 2020;55(8):884–90.

    CAS  PubMed  Google Scholar 

  35. Clarkston KTY, Jackson K, Rosen MJ, Denson LA, Minar P. Development of infliximab target concentrations during induction in pediatric Crohn’s disease patients. J Pediatr Gastroenterol Nutr. 2019;69(1):68–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Velayos FSS, Lockton S, et al. Prevalence of antibodies to adalimumab (ATA) and correlation between ATA and low serum drug concentration on CRP and clinical symptoms in a prospective sample of IBD patients. Gastroenterology. 2013;144(5):S-91.

    Google Scholar 

  37. DA Yarur AJ, Sussman DA, et al. Serum adalimumab levels and antibodies correlate with endoscopic intestinal inflammation and inflammatory markers in patients with inflammatory bowel disease. Gastroenterology. 2013;144(5):S-774.

    Google Scholar 

  38. Karmiris K, Paintaud G, Noman M, et al. Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology. 2009;137(5):1628–40.

    CAS  PubMed  Google Scholar 

  39. Sandborn WHS, Pierre-Louis B, et al. Certolizumab pegol plasma concentration and clinical remission in Crohn’s disease. Gastroenterology. 2012;142(5):S-563.

    Google Scholar 

  40. Cheifetz ASAM, Afif W, Cross RK, Dubinsky MC, Loftus EV, Osterman MT, Saroufim A, Siegel CA, Yarur AJ, Melmed GY, Papamichael K. A comprehensive literature review and expert consensus statement on therapeutic drug monitoring of biologics in inflammatory bowel disease. Am J Gastroenterol. 2022;116(10):2014–25.

    Google Scholar 

  41. Ordas I, Feagan BG, Sandborn WJ. Therapeutic drug monitoring of tumor necrosis factor antagonists in inflammatory bowel disease. Clin Gastroenterol Hepatol. 2012;10(10):1079–87.

    CAS  PubMed  Google Scholar 

  42. Jongsma MME, Winter DA, Huynh HQ, et al. Infliximab in young paediatric IBD patients: it is all about the dosing. Eur J Pediatr. 2020;179(12):1935–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cassinotti A, Travis S. Incidence and clinical significance of immunogenicity to infliximab in Crohn’s disease: a critical systematic review. Inflamm Bowel Dis. 2009;15(8):1264–75.

    PubMed  Google Scholar 

  44. Miele E, Markowitz JE, Mamula P, Baldassano RN. Human antichimeric antibody in children and young adults with inflammatory bowel disease receiving infliximab. J Pediatr Gastroenterol Nutr. 2004;38(5):502–8.

    CAS  PubMed  Google Scholar 

  45. Farrell RJ, Alsahli M, Jeen YT, Falchuk KR, Peppercorn MA, Michetti P. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology. 2003;124(4):917–24.

    CAS  PubMed  Google Scholar 

  46. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95.

    CAS  PubMed  Google Scholar 

  47. Vande Casteele N, Gils A, Singh S, et al. Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am J Gastroenterol. 2013;108(6):962–71.

    PubMed  Google Scholar 

  48. Sazonovs A, Kennedy NA, Moutsianas L, et al. HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn’s disease. Gastroenterology. 2020;158(1):189–99.

    CAS  PubMed  Google Scholar 

  49. Ungar B, Chowers Y, Yavzori M, et al. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut. 2014;63(8):1258–64.

    CAS  PubMed  Google Scholar 

  50. Baert F, Kondragunta V, Lockton S, et al. Antibodies to adalimumab are associated with future inflammation in Crohn’s patients receiving maintenance adalimumab therapy: a post hoc analysis of the Karmiris trial. Gut. 2015;

    Google Scholar 

  51. Imaeda H, Takahashi K, Fujimoto T, et al. Clinical utility of newly developed immunoassays for serum concentrations of adalimumab and anti-adalimumab antibodies in patients with Crohn’s disease. J Gastroenterol. 2014;49(1):100–9.

    CAS  PubMed  Google Scholar 

  52. Sandborn WJ, Abreu MT, D’Haens G, et al. Certolizumab pegol in patients with moderate to severe Crohn’s disease and secondary failure to infliximab. Clin Gastroenterol Hepatol. 2010;8(8):688–695.e682.

    CAS  PubMed  Google Scholar 

  53. Schreiber S, Khaliq-Kareemi M, Lawrance IC, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357(3):239–50.

    CAS  PubMed  Google Scholar 

  54. Zitomersky NL, Atkinson BJ, Fournier K, et al. Antibodies to infliximab are associated with lower infliximab levels and increased likelihood of surgery in pediatric IBD. Inflamm Bowel Dis. 2015;21(2):307–14.

    PubMed  Google Scholar 

  55. Baert F, Drobne D, Gils A, et al. Early trough levels and antibodies to infliximab predict safety and success of re-initiation of infliximab therapy. Clin Gastroenterol Hepatol. 2014.

    Google Scholar 

  56. Wang SL, Ohrmund L, Hauenstein S, et al. Development and validation of a homogeneous mobility shift assay for the measurement of infliximab and antibodies-to-infliximab levels in patient serum. J Immunol Methods. 2012;382(1–2):177–88.

    CAS  PubMed  Google Scholar 

  57. Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91(4):635–46.

    CAS  PubMed  Google Scholar 

  58. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    CAS  PubMed  Google Scholar 

  59. Lund K, Larsen MD, Knudsen T, Kjeldsen J, Nielsen RG, Norgard BM. Infliximab, immunomodulators and treatment failures in pediatric and adolescent patients with Crohn’s disease—a nationwide cohort study. J Crohns Colitis. 2020;

    Google Scholar 

  60. Panaccione R, Ghosh S, Middleton S, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014;146(2):392–400 e393.

    CAS  PubMed  Google Scholar 

  61. Lega S, Phan BL, Rosenthal CJ, et al. Proactively optimized infliximab monotherapy is as effective as combination therapy in IBD. Inflamm Bowel Dis. 2019;25(1):134–41.

    PubMed  Google Scholar 

  62. Watanabe K, Matsumoto T, Hisamatsu T, et al. Clinical and pharmacokinetic factors associated with adalimumab-induced mucosal healing in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2018;16(4):542.

    CAS  PubMed  Google Scholar 

  63. Matar M, Shamir R, Turner D, et al. Combination therapy of adalimumab with an immunomodulator is not more effective than adalimumab monotherapy in children with Crohn’s disease: a post hoc analysis of the PAILOT randomized controlled trial. Inflamm Bowel Dis. 2020;26(11):1627–35.

    PubMed  Google Scholar 

  64. Hyams JS, Dubinsky M, Rosh J, et al. The effects of concomitant immunomodulators on the pharmacokinetics, efficacy and safety of adalimumab in paediatric patients with Crohn’s disease: a post hoc analysis. Aliment Pharmacol Ther. 2019;49(2):155–64.

    CAS  PubMed  Google Scholar 

  65. van Schaik T, Maljaars JPW, Roopram RK, et al. Influence of combination therapy with immune modulators on anti-TNF trough levels and antibodies in patients with IBD. Inflamm Bowel Dis. 2014;20(12):2292–8.

    PubMed  Google Scholar 

  66. Ben-Horin S, Waterman M, Kopylov U, et al. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11(4):444–7.

    CAS  PubMed  Google Scholar 

  67. Ong DE, Kamm MA, Hartono JL, Lust M. Addition of thiopurines can recapture response in patients with Crohn’s disease who have lost response to anti-tumor necrosis factor monotherapy. J Gastroenterol Hepatol. 2013;28(10):1595–9.

    CAS  PubMed  Google Scholar 

  68. Maini RN, Breedveld FC, Kalden JR, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41(9):1552–63.

    CAS  PubMed  Google Scholar 

  69. Vahabnezhad E, Rabizadeh S, Dubinsky MC. A 10-year, single tertiary care center experience on the durability of infliximab in Pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2014;18:18.

    Google Scholar 

  70. Coleman RRD. Optimal doses of methotrexate combined with anti-TNF therapy to maintain clinical remission in inflammatory bowel disease. J Crohns Coltis. 2015;9(4):312–7.

    Google Scholar 

  71. Feagan BG, McDonald JW, Panaccione R, et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology. 2014;146(3):681–8.

    CAS  PubMed  Google Scholar 

  72. Schroder O, Blumenstein I, Stein J. Combining infliximab with methotrexate for the induction and maintenance of remission in refractory Crohn’s disease: a controlled pilot study. Eur J Gastroenterol Hepatol. 2006;18(1):11–6.

    PubMed  Google Scholar 

  73. Stein R, Lee D, Leonard MB, et al. Serum infliximab, antidrug antibodies, and tumor necrosis factor predict sustained response in pediatric Crohn’s disease. Inflamm Bowel Dis. 2016;22(6):1370–7.

    PubMed  Google Scholar 

  74. Vande Casteele N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology. 2015;148(7):1320.

    CAS  PubMed  Google Scholar 

  75. Vaughn BP, Martinez-Vazquez M, Patwardhan VR, Moss AC, Sandborn WJ, Cheifetz AS. Proactive therapeutic concentration monitoring of infliximab may improve outcomes for patients with inflammatory bowel disease: results from a pilot observational study. Inflamm Bowel Dis. 2014;20(11):1996–2003.

    PubMed  Google Scholar 

  76. Assa A, Matar M, Turner D, et al. Proactive monitoring of adalimumab trough concentration associated with increased clinical remission in children with Crohn’s disease compared with reactive monitoring. Gastroenterology. 2019;157(4):985.

    CAS  PubMed  Google Scholar 

  77. Lyles JL, Mulgund AA, Bauman LE, et al. Effect of a practice-wide anti-TNF proactive therapeutic drug monitoring program on outcomes in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2020;

    Google Scholar 

  78. Steenholdt C, Bendtzen K, Brynskov J, Thomsen OO, Ainsworth MA. Clinical implications of measuring drug and anti-drug antibodies by different assays when optimizing infliximab treatment failure in Crohn’s disease: post hoc analysis of a randomized controlled trial. Am J Gastroenterol. 2014;109(7):1055–64.

    CAS  PubMed  Google Scholar 

  79. Fernandes SR, Bernardo S, Simoes C, et al. Proactive infliximab drug monitoring is superior to conventional management in inflammatory bowel disease. Inflamm Bowel Dis. 2020;26(2):263–70.

    PubMed  Google Scholar 

  80. Papamichael K, Rakowsky S, Rivera C, Cheifetz AS, Osterman MT. Infliximab trough concentrations during maintenance therapy are associated with endoscopic and histologic healing in ulcerative colitis. Aliment Pharmacol Ther. 2018;47(4):478–84.

    CAS  PubMed  Google Scholar 

  81. Syversen SWJK, Goll GL, Brun MK, Sandanger Ø, Bjørlykke KH, Sexton J, Olsen IC, Gehin JE, Warren DJ, Klaasen RA, Noraberg Bruun TJ, Dotterud CK, Aga Ljoså MK, Haugen AJ, Njålla RJ, Zettel C, Ystrøm CM, Bragnes YH, Skorpe S, Thune T, Seeberg KA, Michelsen B, Blomgren IM, Strand EK, Mielnik P, Torp R, Mørk C, Kvien TK, Jahnsen J, Bolstad N, Haavardsholm EA. Effect of therapeutic drug monitoring vs standard therapy during maintenance infliximab therapy on disease control in patients with immune-mediated inflammatory diseases: a randomized clinical trial. JAMA. 2021;326(23):2375–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dubinsky MC, Mendiolaza ML, Phan BL, Moran HR, Tse SS, Mould DR. Dashboard-driven accelerated infliximab induction dosing increases infliximab durability and reduces immunogenicity. Inflamm Bowel Dis. 2022;

    Google Scholar 

  83. Singh N, Rabizadeh S, Jossen J, et al. Multi-Center experience of vedolizumab effectiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(9):2121–6.

    PubMed  Google Scholar 

  84. Conrad MA, Stein RE, Maxwell EC, et al. Vedolizumab therapy in severe pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(10):2425–31.

    PubMed  Google Scholar 

  85. Ledder O, Assa A, Levine A, et al. Vedolizumab in paediatric inflammatory bowel disease: a retrospective multi-centre experience from the paediatric IBD Porto group of ESPGHAN. J Crohns Colitis. 2017;11(10):1230–7.

    PubMed  Google Scholar 

  86. Schneider AM, Weghuber D, Hetzer B, et al. Vedolizumab use after failure of TNF-alpha antagonists in children and adolescents with inflammatory bowel disease. BMC Gastroenterol. 2018;18(1):140.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosario M, French JL, Dirks NL, et al. Exposure-efficacy relationships for vedolizumab induction therapy in patients with ulcerative colitis or Crohn’s disease. J Crohns Colitis. 2017;11(8):921–9.

    PubMed  Google Scholar 

  88. Osterman MT, Rosario M, Lasch K, et al. Vedolizumab exposure levels and clinical outcomes in ulcerative colitis: determining the potential for dose optimisation. Aliment Pharmacol Ther. 2019;49(4):408–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Singh S, Dulai PS, Vande Casteele N, et al. Systematic review with meta-analysis: association between vedolizumab trough concentration and clinical outcomes in patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2019;50(8):848–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ungaro RC, Yarur A, Jossen J, et al. Higher trough vedolizumab concentrations during maintenance therapy are associated with corticosteroid-free remission in inflammatory bowel disease. J Crohns Colitis. 2019;13(8):963–9.

    PubMed  PubMed Central  Google Scholar 

  91. Peyrin-Biroulet L, Danese S, Argollo M, et al. Loss of response to vedolizumab and ability of dose intensification to restore response in patients with Crohn’s disease or ulcerative colitis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17(5):838–46. e832

    CAS  PubMed  Google Scholar 

  92. Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.

    CAS  PubMed  Google Scholar 

  93. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21.

    CAS  PubMed  Google Scholar 

  94. Hedin C, Halfvarson J. Should we use vedolizumab as mono or combo therapy in ulcerative colitis? Best Pract Res Clin Gastroenterol. 2018;32-33:27–34.

    CAS  PubMed  Google Scholar 

  95. Van den Berghe N, Verstockt B, Tops S, Ferrante M, Vermeire S, Gils A. Immunogenicity is not the driving force of treatment failure in vedolizumab-treated inflammatory bowel disease patients. J Gastroenterol Hepatol. 2019;34(7):1175–81.

    PubMed  Google Scholar 

  96. Aardoom MA, Jongsma MME, de Vries A, Wolthoorn J, de Ridder L, Escher JC. Vedolizumab trough levels in children with anti-tumor necrosis factor refractory inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2020;71(4):501–7.

    CAS  PubMed  Google Scholar 

  97. Bishop C, Simon H, Suskind D, Lee D, Wahbeh G. Ustekinumab in pediatric Crohn disease patients. J Pediatr Gastroenterol Nutr. 2016;63(3):348–51.

    CAS  PubMed  Google Scholar 

  98. Dayan JR, Dolinger M, Benkov K, et al. Real world experience with ustekinumab in children and young adults at a tertiary care pediatric inflammatory bowel disease Center. J Pediatr Gastroenterol Nutr. 2019;69(1):61–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chavannes M, Martinez-Vinson C, Hart L, et al. Management of paediatric patients with medically refractory Crohn’s disease using ustekinumab: a multi-centred cohort study. J Crohns Colitis. 2019;13(5):578–84.

    PubMed  Google Scholar 

  100. Lamb YN, Duggan ST. Ustekinumab: a review in moderate to severe Crohn’s disease. Drugs. 2017;77(10):1105–14.

    CAS  PubMed  Google Scholar 

  101. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375(20):1946–60.

    CAS  PubMed  Google Scholar 

  102. Adedokun OJ, Xu Z, Gasink C, et al. Pharmacokinetics and exposure response relationships of ustekinumab in patients with Crohn’s disease. Gastroenterology. 2018;154(6):1660–71.

    CAS  PubMed  Google Scholar 

  103. Adedokun OJ, Xu Z, Marano C, et al. Ustekinumab pharmacokinetics and exposure response in a phase 3 randomized trial of patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2020;18(10):2244–55. e2249

    CAS  PubMed  Google Scholar 

  104. Hanauer SB, Sandborn WJ, Feagan BG, et al. IM-UNITI: three-year efficacy, safety, and immunogenicity of ustekinumab treatment of Crohn’s disease. J Crohns Colitis. 2020;14(1):23–32.

    PubMed  Google Scholar 

  105. Kopylov U, Afif W, Cohen A, et al. Subcutaneous ustekinumab for the treatment of anti-TNF resistant Crohn’s disease—the McGill experience. J Crohns Colitis. 2014;8(11):1516–22.

    CAS  PubMed  Google Scholar 

  106. Khorrami S, Ginard D, Marin-Jimenez I, et al. Ustekinumab for the treatment of refractory Crohn’s disease: the Spanish experience in a large multicentre open-label cohort. Inflamm Bowel Dis. 2016;22(7):1662–9.

    PubMed  Google Scholar 

  107. Takeuchi I, Arai K, Kyodo R, et al. Ustekinumab for children and adolescents with inflammatory bowel disease at a tertiary children’s hospital in Japan. J Gastroenterol Hepatol. 2021;36(1):125–30.

    CAS  PubMed  Google Scholar 

  108. Dubinsky MC, Phan BL, Singh N, Rabizadeh S, Mould DR. Pharmacokinetic dashboard-recommended dosing is different than standard of care dosing in infliximab-treated pediatric IBD patients. AAPS J. 2017;19(1):215–22.

    CAS  PubMed  Google Scholar 

  109. Piester T, Frymoyer A, Christofferson M, Yu H, Bass D, Park KT. A Mobile infliximab dosing calculator for therapy optimization in inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(2):227–34.

    PubMed  PubMed Central  Google Scholar 

  110. Strik AS, Lowenberg M, Mould DR, et al. Efficacy of dashboard driven dosing of infliximab in inflammatory bowel disease patients; a randomized controlled trial. Scand J Gastroenterol. 2021;56(2):145–54.

    CAS  PubMed  Google Scholar 

  111. Dave MB, Dherai AJ, Desai DC, Mould DR, Ashavaid TF. Optimization of infliximab therapy in inflammatory bowel disease using a dashboard approach-an Indian experience. Eur J Clin Pharmacol. 2021;77(1):55–62.

    CAS  PubMed  Google Scholar 

  112. Eser A, Primas C, Reinisch S, et al. Prediction of individual serum infliximab concentrations in inflammatory bowel disease by a Bayesian dashboard system. J Clin Pharmacol. 2018;58(6):790–802.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla C. Dubinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Dubinsky, M.C. (2023). Therapeutic Drug Monitoring in Pediatric Inflammatory Bowel Disease. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics