Skip to main content

Introduction of Human Skin Prestress: Effect on the Wave Propagation Velocity

  • Conference paper
  • First Online:
Design and Modeling of Mechanical Systems - V (CMSM 2021)

Abstract

Characterization of human skin properties is more and more intriguing scientists as it is an nonlinear anisotropic material. This mechanical behavior can be justified by the presence of collagen fibers. These fibers induce a natural prestress responsible of aging and anisotropy of the skin. Therefore, the present paper proposes an insight into the study of a new intrinsic human skin characteristic, which is the natural prestress of the cutaneous tissue. The purpose of this work is to distance the relation between human skin natural prestress and wave propagation velocity in the surface of the skin. To this aim, a 3D model based on the Finite Element Method (FEM) was developed. The skin is modeled by a stratified 3D volume with two layers. The cutaneous tissue is considered as an isotropic linear elastic material. The upper outer surface is subjected to a mechanical impact inducing a surface wave that propagates throughout the surface. The wave propagation velocity is calculated along a path on the surface of the FE model. The influence of the human skin prestress on the velocity of the wave propagation is investigated. A major conclusion states that the prestress slows down the wave propagation. Thus, the wave propagation velocity decreases when the prestress increases. The skin soaks the loading and is then similar to an elastic trampoline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellan, M-A., Feulvarch, E., Zahouani, H., Bergheau, J.-M.L.: Numerical simulation of in vivo indentation tests: determination of the mechanical properties of human skin. In: 21st Congrès Français de MĂ©canique, CFM 2013, Bordeaux, France, 26–30 August (2013)

    Google Scholar 

  • Agache, P., Monneu, C., LĂ©vĂŞque, J., De Rigal, J.: Mechanical properties and young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980)

    Article  Google Scholar 

  • Agache, P.: Physiologie de la peau humaine et explorations fonctionnelles cutanĂ©es. Lavoisier (2000)

    Google Scholar 

  • Ayadh, M., Abellan, M.-A., Helfenstein-Didier, C., Bigouret, A., Zahouani, H.: Methods for characterizing the anisotropic behavior of the human skin’s relief and its mechanical properties in vivo linked to age effects. Surf. Topogr. Metrol. Prop. 8, 014002 (2020). https://doi.org/10.1088/2051-672X/ab7c31

  • Azzez, K., Abellan, M.-A., Chaabane, M., Bergheau, J.-M., Zahouani, H., Dogui, A.: Investigation on the effect of the contact-free creep test loading conditions on the human skin viscoelastic parameters. In: Aifaoui, N., et al. (eds.) CMSM 2019. LNME, pp. 214–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27146-6_23

    Chapter  Google Scholar 

  • Bischoff, J.E., Arruda, E.M., Grosh, K.: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech. Model. Mechanobiol. 3(1), 56–65 (2004). https://doi.org/10.1007/s10237-004-0049-4

    Article  Google Scholar 

  • Bonnet, I., et al.: Collagen XVII : a key interfacial component of the skin architecture. Int. J. Cosmet. Sci. 68, 35–41 (2017)

    Google Scholar 

  • Danielson, D.: Human skin as an elastic membrane. J. Biomech. 6, 539–546 (1973)

    Article  Google Scholar 

  • De Rigal, J.D., LĂ©vĂŞque, J.: In vivo measurement of the stratum corneum elasticity. Bioeng. Skin 1, 13–23 (1985)

    Google Scholar 

  • Delalleau, A., Josse, G., Lagarde, J.-M., Zahouani, H., Bergheau, J.-M.: A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res. Technol. 14, 152–164 (2008)

    Article  Google Scholar 

  • Diridollou, S., et al.: In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6(4), 214–221 (2000)

    Article  Google Scholar 

  • Flynn, C., Taberner, A., Nielsen, P.: Modeling the mechanical response of in vivo human skin under a rich set of deformations. Ann. Biomed. Eng. 39(7), 1935–1946 (2011)

    Article  Google Scholar 

  • Kawahara, T., Tokuda, K., Tanaka, N., Kaneko, M.: Non-contact impedance sensing. Artif. Life Robot. 10(1), 35–40 (2006)

    Article  Google Scholar 

  • Lakhani, P., Dwivedi, K.K., Parashar, A., Kumar. N.: Non-invasive in vivo quantification of directional dependent variation in mechanical properties for human skin. Front. Bioeng. Biotechnol. 9, 749492 (2021). https://doi.org/10.3389/fbioe.2021.749492. PMID: 34746105. PMCID: PMC8569611

  • Leveque, J.-L., De Rigal, J., Agache, P.-G., Monneur, C.: Influence of ageing on the in vivo extensibility of human skin at a low stress. Arch. Dermatol. Res. 269(2), 127–135 (1980)

    Article  Google Scholar 

  • Li, G., Guan, G., Reif, R., Huang, Z., Wang, R.K.: Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface 9(70), 831–841 (2011)

    Article  Google Scholar 

  • Tanaka, N., Kaneko, M.: Direction dependent response of human skin. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1687–1690 (2007)

    Google Scholar 

  • Zahouani, H., et al.: Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res. Technol. 15, 68–76 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khouloud Azzez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzez, K., Abellan, MA., Chaabane, M., Bergheau, JM., Dogui, A., Zahouani, H. (2023). Introduction of Human Skin Prestress: Effect on the Wave Propagation Velocity. In: Walha, L., et al. Design and Modeling of Mechanical Systems - V. CMSM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-14615-2_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14615-2_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14614-5

  • Online ISBN: 978-3-031-14615-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics