Skip to main content

Prompt and Delayed Emission

  • Chapter
  • First Online:
Nuclear Fission

Abstract

The neutrons and gamma rays emitted after fission have been intensely studied ever since its discovery. The excited fragments return to their ground states via prompt neutron and gamma emission. While most of the fragment excitation energy is removed by neutron emission, gamma emission returns the product nucleus to its ground state. Delayed emission occurs at longer time scales and contributes only a small fraction of the total neutron and gamma emission. The general characteristics of neutron and gamma emission are described in Sect. 3.1 without reference to models. An overview of experimental techniques is presented in Sect. 3.2. Section 3.3 describes the nuclear physics pertinent to neutron and gamma emission. It then discusses fission models, starting from parameterizations of the neutron spectrum to deterministic models and, more recently, complete event fission models. One of the notable advances enabled by complete event fission models of fission is the study of more complex correlations between the fission fragments, the neutrons and gamma rays. This advance has encouraged detailed measurements of correlations, including between neutrons and gammas. Finally, delayed neutron and gamma emission is briefly discussed in Sect. 3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 31 March 2023

    A correction has been published.

References

  1. D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities. Nucl. Sci. Eng. 81, 213 (1982)

    ADS  Google Scholar 

  2. N. Bohr, J.A. Wheeler, The mechanism of nuclear fission. Phys. Rev. 56, 426 (1939)

    ADS  MATH  Google Scholar 

  3. M.E. Bunker, Early reactors: from fermi’s water boiler to novel power proto- types. Los Alamos Sci. 7, 124 (1983)

    Google Scholar 

  4. R.P. Feynman, F. De Hoffmann, R. Serber, Dispersion of the neutron emission in U-235 fission. J. Nucl. Energy 3, 64 (1956)

    Google Scholar 

  5. B.C. Diven, H.C. Martin, R.F Taschek, J. Terrel, Multiplicities of fission neutrons. Phys. Rev. 101, 1012 (1956)

    Google Scholar 

  6. M. Soleilhac, J. Fréhaut, J. Gauriau, Energy dependence of \(\bar {v}_p\) for neutron-induced fission of 235U, 238U and 239Pu from 1.3 to 15 MeV. J. Nucl. Energy 23, 257 (1969)

    Google Scholar 

  7. J.T. Caldwell, E.J. Dowdy, R.A. Alvarez, B.L. Berman, P. Meyer, Exper imental determination of photofission neutron multiplicities for 235U, 236U, 238U, and 232Th using monoenergetic photons. Nucl. Sci. Eng. 73, 153 (1980)

    ADS  Google Scholar 

  8. B.L. Berman, J.T. Caldwell, E.J. Dowdy, S.S. Dietrich, P. Meyer, R.A. Alvarez, Photofission and photoneutron cross sections and photofission neutron multiplicities for 233U, 234U, 237Np, and 239Pu. Phys. Rev. C 34, 2201 (1986)

    ADS  Google Scholar 

  9. P. Santi, M. Miller, Reevaluation of prompt neutron emission multiplicity dis- tributions for spontaneous fission. Nucl. Sci. Eng. 160, 190 (2008)

    ADS  Google Scholar 

  10. N.E. Holden, M.S. Zucker, Prompt neutron emission multiplicity distribution and average values (nubar) at 2200 m/s for the fissile nuclides. Nucl. Sci. Eng. 98, 174 (1988)

    ADS  Google Scholar 

  11. P. Talou et al., Correlated prompt fission data in transport simulations. Eur. Phys. J. A 54, 9 (2018)

    ADS  Google Scholar 

  12. A.D. Carlson et al., International evaluation of neutron cross section standards. Nucl. Data Sheets 110, 3215 (2009)

    ADS  Google Scholar 

  13. A.D. Carlson et al., Evaluation of the neutron data standards. Nucl. Data Sheets 148, 143 (2018)

    ADS  Google Scholar 

  14. N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, ed. by P. Young, vol. 2 (1985), p. 1631

    Google Scholar 

  15. R.R. Spencer, R. Gwin, R. Ingle, A measurement of the average number of prompt neutrons from spontaneous fission of californium-252. Nucl. Sci. Eng. 80, 603 (1982)

    ADS  Google Scholar 

  16. A.S. Vorobyev et al., Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of 252Cf and 244, 248Cm, in Proceedings of International Conference on Nuclear Data for Science and Technology ND2004, ed. by R. Haight, M. Chadwick, T. Kawano, P. Talou, vol. CP769 (2005), p. 613

    Google Scholar 

  17. T. Ethvignot et al., Neutron multiplicity in the fission of 238U and 235U with neutrons up to 200 MeV. Phys. Rev. Lett. 94, 052701 (2005)

    ADS  Google Scholar 

  18. J. Terrell, Distributions of fission neutron numbers. Phys. Rev. 108, 783 (1957)

    ADS  Google Scholar 

  19. J.M. Verbeke, C. Hagmann, D. Wright, Simulation of neutron and gamma ray emission from fission and photofission, Tech. Rep. UCRL-AR-228518 (Lawrence Livermore National Laboratory, Livermore, 2010).

    Google Scholar 

  20. N.E. Holden, M.S. Zucker, A re-evaluation of the average prompt neu- tron emission multiplicity (Nubar) values from fission of uranium and transura- nium nuclides, in IAEA Advisory Group Mtg. Neutron Standard Reference Data. TECDOC series, vol. IAEA-TECDOC-335 (1985), p. 248

    Google Scholar 

  21. P. Santi, D.H. Beddingfield, D.R. Mayo, Revised prompt neutron emission multiplicity distributions for 236, 238Pu. Nucl. Phys. A 756, 325 (2005)

    ADS  Google Scholar 

  22. N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides. Radiat. Eff. 96, 289 (1986)

    ADS  Google Scholar 

  23. M. Dakowski, Y.A. Lazarev, V.F. Turchin, L.S. Turovtseva, Reconstruction of particle multiplicity distributions using the method of statistical regularization. Nucl. Instrum. Methods 113, 195 (1973)

    ADS  Google Scholar 

  24. E.A. Sokol, S.S. Zeinalov, and G.M. Ter-Akopian, Multiplicity of fast neutrons in the spontaneous fission of 256Fm. Sov. At. Energy 67, 851 (1989)

    Google Scholar 

  25. G.M. Ter-Akopian, A.G. Popeko, E.A. Sokol, L.P. Chelnokov, V.I. Smirnov, V.A. Gorshkov, A neutron multiplicity detector for rare spontaneous fission events. Nucl. Instrum. Methods Phys. Res. 190, 119 (1981)

    ADS  Google Scholar 

  26. S.D. Clarke et al., Measurement of the energy and multiplicity distributions of neutrons from the photofission of 235U. Phys. Rev. C 95 064612 (2017)

    ADS  Google Scholar 

  27. V.N. Dushin et al., Facility for neutron multiplicity measurements in fission. Nucl. Instrum. Methods Phys. Res. Sect. A 516, 539 (2004)

    ADS  Google Scholar 

  28. K. Nishio, Y. Nakagome, I. Kanno, I. Kimura, Measurement of fragment mass dependent kinetic energy and neutron multiplicity for thermal neutron induced fission of plutonium-239. J. Nucl. Sci. Technol. 32, 404 (1995)

    Google Scholar 

  29. A.S. Vorobyev, O.A. Shcherbakov, A.M. Gagarski, G.V. Val’ski, G.A. Petrov, “Investigation of the prompt neutron emission mechanism in low energy fission of 235, 233U(nth,f) and 252Cf(sf). EPJ Web Conf. 8, 03004 (2010)

    Google Scholar 

  30. A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Fission fragment properties in fast-neutron-induced fission of 237Np. Phys. Rev. C 34, 218 (1986)

    ADS  Google Scholar 

  31. K.-H. Schmidt, B. Jurado, Entropy driven excitation energy sorting in super fluid fission dynamics. Phys. Rev. Lett. 104, 212501 (2010)

    ADS  Google Scholar 

  32. A. Göök, F.-J. Hambsch, M. Vidali, Prompt neutron multiplicity in correlation with fragments from spontaneous fission of 252Cf. Phys. Rev. C 90, 064611 (2014)

    ADS  Google Scholar 

  33. A. Göök, F.-J. Hambsch, S. Oberstedt, M. Vidali, Prompt neutrons in correlation with fission fragments from 235U(n,f). Phys. Rev. C 98, 044615 (2018)

    ADS  Google Scholar 

  34. C. Tsuchiya et al., “Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth,f). J. Nucl. Sci. Technol. 37, 941 (2000)

    Google Scholar 

  35. W.E. Bennett, H.T. Richards, A discussion of the fission neutron spectrum, Tech. Rep. LA-00001-MS (Los Alamos Scientific Laboratory, New Mexico, 1943)

    Google Scholar 

  36. B.E. Watt, Energy spectrum of neutrons from thermal fission of 235U. Phys. Rev. 87, 1037 (1952)

    ADS  Google Scholar 

  37. P. Staples, J.J. Egan, G.H.R. Kegel, A. Mittler, M.L. Woodring, Prompt fission neutron energy spectra induced by fast neutrons. Nucl. Phys. A 591, 41 (1995)

    ADS  Google Scholar 

  38. G.N. Lovchikova, A.M. Trufanov, M.I. Svirin, V.A. Vinogradov, A.V. Polyakov, Spectra and mean energies of prompt neutrons from 238U fission induced by primary neutrons of energy in the region En < 20 MeV. Phys. At. Nucl. 67, 1246 (2004)

    Google Scholar 

  39. T. Ethvignot et al., Prompt-fission-neutron average energy for 238U(n,f) from thresh- old to 200 MeV. Phys. Lett. B 575, 221 (2003)

    ADS  Google Scholar 

  40. R. Capote et al., Prompt fission neutron spectra of actinides. Nucl. Data Sheets 131, 1 (2016)

    ADS  Google Scholar 

  41. D.L. Hill, The neutron energy spectrum from 235U thermal fission. Phys. Rev. 87 1034 (1952)

    ADS  Google Scholar 

  42. M.B. Chadwick, M. Herman, P. Obložzinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112 2887 (2011)

    Google Scholar 

  43. D. Neudecker et al., Evaluation of the 239Pu prompt fission neutron spectrum in- duced by neutrons of 500 keV and associated covariances. Nucl. Instrum. Methods Phys. Res. Sect. A 791, 80 (2015)

    ADS  Google Scholar 

  44. D. Neudecker et al., Evaluations of energy spectra of neutrons emitted promptly in neutron-induced fission of 235U and 239Pu. Nucl. Data Sheets 148, 293 (2018)

    ADS  Google Scholar 

  45. T.N. Taddeucci et al., Multiple-scattering corrections to measurements of the prompt fission neutron spectrum. Nucl. Data Sheets 123, 135 (2015)

    ADS  Google Scholar 

  46. S. Noda et al., Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on 235U and 239Pu using the double time-of-flight technique. Phys. Rev. C 83, 034604 (2011)

    ADS  Google Scholar 

  47. A. Enqvist et al., Neutron-induced 235U fission spectrum measurements using liquid organic scintillation detectors. Phys. Rev. C 86, 064605 (2012)

    ADS  Google Scholar 

  48. J.P. Lestone, E.F. Shores, Uranium and plutonium average prompt fission neutron energy spectra (PFNS) from the analysis of NTS NUEX data. Nucl. Data Sheets 119, 213 (2014)

    ADS  Google Scholar 

  49. A. Chatillon et al., Measurement of prompt neutron spectra from the 239Pu(nf) fission reaction for incident neutron energies from 1 to 200 MeV. Phys. Rev. C 89, 014611 (2014)

    ADS  Google Scholar 

  50. V.V. Desai, B.K. Nayak, A. Saxena, S.V. Suryanarayana, R. Capote, Prompt fission neutron spectra in fast-neutron-induced fission of 238U. Phys. Rev. C 92, 014609 (2015)

    ADS  Google Scholar 

  51. B. Laurent et al., New prompt fission neutron spectra measurements in the 238U(n,f) reaction with a dedicated setup at LANSCE/WNR. EPJ Web Conf. 146, 04014 (2017)

    Google Scholar 

  52. M. Devlin et al., The prompt fission neutron spectrum of 235U(n,f) below 2.5 MeV for incident neutrons from 0.7 to 20 MeV. Nucl. Data Sheets 148, 322 (2018)

    Google Scholar 

  53. K. Nishio, Y Nakagome, H. Yamamoto, I. Kimura, Multiplicity and energy of neutrons from 235U(nth,f) fission fragments. Nucl. Phys. A 632, 540 (1998)

    Google Scholar 

  54. H. Werle, H. Bluhm, Fission neutron spectra meaurements of 235U, 239Pu and 252Cf. J. Nucl. Energy 26, 165 (1972)

    ADS  Google Scholar 

  55. O.A. Batenkov et al., Prompt neutron emission in the neutron-induced fission of 239Pu and 235U. AIP Conf. Proc. 769, 1003 (2005)

    ADS  Google Scholar 

  56. L.M. Belov, M.V. Blinov, N.M. Kazarinov, A.S. Krivokhatskii, A.M. Protopopov, Spectra of fission neutrons of 244Cm, 242Pu and 239Pu. Yad. Fiz. 9 727 (1969)

    Google Scholar 

  57. V.N. Nefedov, B.I. Starostov, A.A. Boytsov, Precision measurements of 252Cf, 233U, 235U and 239Pu prompt fission neutron spectra (PFNS) in the energy range 0.04–5 MeV, in Proceedings of 6th All Union Conference on Neutron Physics, vol. 2 (1983), p. 285

    Google Scholar 

  58. B.I. Starostov, V.N. Nefedov, A.A. Boytsov, Precision measurements of 252Cf, 233U + nth, 235U + nth and 239Pu + nth prompt fission neutron spectra (PFNS) in the energy range 2 - 11 MeV, in Proceedings of 6th All Union Conference on Neutron Physics, vol. 2 (1983), p. 290

    Google Scholar 

  59. A.A. Boytsov, A.F. Semenov, B.I. Starostov, Relative measurements of 233U + nth, 235U + nth and 239Pu + nth prompt fission neutron spectra (PFNS) in the energy range 0.01–5 MeV, in Proceedings of 6th All Union Conference on Neutron Physics, vol. 2 (1983), p. 294

    Google Scholar 

  60. B.I. Starostov, V.N. Nefedov, A.A. Boytsov, Prompt neutron spectra from fission of 233U, 235U and 239Pu by thermal neutrons and from spontaneous fission of 252Cf in the 0.01–12 MeV energy range. Vopr. At. Nauk. Tech. Ser. Yad. Konst. 3, 161 (1985)

    Google Scholar 

  61. A. Lajtai, J. Kecskeméti, J. Sáfár, P.P. Dyachenko, V.M. Piksaikin, Energy spectrum measurements of neutrons for energies 30 keV–4 meV from thermal fission of main fuel elements. Radiat. Eff 93, 277 (1986)

    ADS  Google Scholar 

  62. A. Lajtai, P.P. Dyachenko, V.N. Kononov, E.A. Seregina, Low-energy neutron spectrometer and its application for 252Cf neutron spectrum measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 293, 555 (1990)

    ADS  Google Scholar 

  63. T. Granier, Reanalysis of 239Pu prompt fission neutron spectra. Phys. Proc. 64, 183 (2015)

    ADS  Google Scholar 

  64. A. Smith, P Guenther, G. Winkler, R. McKnight, Prompt-fission-neutron spectra of 233U, 235U, 239 Pu and 240 Pu Relative to that of 252 Cf. Tech. Rep. ANL/NDM-50 (Argonne National Laboratory, Lemont, 1979)

    Google Scholar 

  65. A. Smith, P. Guenther, G. Winkler, R. McKnight, Note on the prompt-fission- neutron spectra of Uranium-233 and -235 and Plutonium-239 and -240 relative to that of Californium-252. Nucl. Sci. Eng. 76, 357 (1980)

    ADS  Google Scholar 

  66. D. Abramson, C. Lavelaine, Fission neutron spectra of 235 U and 239 Pu. Tech. Rep. AERE-R-8636 (Atomic Energy Research Establishment, Harwell, 1977), p. 40

    Google Scholar 

  67. P.I. Johansson, B. Holmqvist, T. Wiedling, L. Jéki, Precision measurement of prompt fission neutron spectra of 235U, 238U and 239Pu, in Conference on Nuclear Cross Sections and Technology, vol. 2 (1975), p. 572

    Google Scholar 

  68. H.H. Knitter, Measurement of the energy spectrum of prompt neutrons from the fission of Pu-239 by 0.125 MeV neutrons. Atomkernenergie 26 76 (1975)

    Google Scholar 

  69. H. Condé, G. During, J. Hansén, Fission neutron spectra, part I, a neutron detector for fast neutron time-of-flight spectroscopy. Ark. Fys. 29, 307 (1965)

    Google Scholar 

  70. H. Condé, G. During, J. Hansén, Fission neutron spectra, part ii, fission neutron spectra of 235U, 239Pu and 252Cf. Ark. Fys. 29, 313 (1965)

    Google Scholar 

  71. J. Randrup, R. Vogt, Refined treatment of angular momentum in the event-by event fission model FREYA. Phys. Rev. C 89, 044601 (2014)

    ADS  Google Scholar 

  72. A. Gavron, Correction of experimental results in fission experiment: II. Neutron yield corrections. Nucl. Instrum. Methods 115, 99 (1974)

    ADS  Google Scholar 

  73. H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Velocity and angular distributions of prompt neutrons from spontaneous fission of 252Cf. Phys. Rev. 126, 2120 (1962)

    ADS  Google Scholar 

  74. J.B. Wilhelmy, E. Cheifetz, R.C. Jared, S.G. Thompson, H.R. Bowman, J.O. Rasmussen, Angular momentum of primary products formed in the spontaneous fission of 252Cf. Phys. Rev. C 5, 2041 (1972)

    ADS  Google Scholar 

  75. A. Gavron, H.C. Britt, E. Konecny, J. Weber, J.B. Wilhelmy, Γn∕ Γf for actinide nuclei using (3He,df) and (3He,tf) reactions. Phys. Rev. C 13, 2374 (1976)

    ADS  Google Scholar 

  76. A.S. Vorobyev et al., Measurements of angular and energy distributions of prompt neutrons from thermal neutron-induced fission. Nucl. Instrum. Methods Phys. Res. Sect. A 598, 795 (2009)

    ADS  Google Scholar 

  77. V.E. Bunakov, I.S. Guseva, S.G. Kadmensky, G.A. Petrov, Angular anisotropy of neutrons evaporated from fission fragments. Bull. Rus. Acad. Sci. Phys. 70, 1853 (2006)

    Google Scholar 

  78. V.E. Bunakov, I.S. Guseva, S.G. Kadmensky, G.A. Petrov, Angular anisotropy of neutrons evaporated from fission fragments, in Proceedings of XIII International Seminar Interaction of Neutrons with Nuclei (ISINN-13) (2006), p. 293

    Google Scholar 

  79. A. Chietera et al., Angular correlations in the prompt neutron emission of sponta- neous fission of 252Cf. Eur. Phys. J. A 54, 98 (2018)

    ADS  Google Scholar 

  80. U. Brosa, H.-H. Knitter, The scission neutron spectrum of 252Cf (sf). Z. Phys. A: Hadrons Nucl. 343, 39 (1992)

    Google Scholar 

  81. K.J. Kelly et al., Preequilibrium asymmetries in the 239Pu(n,f) prompt fission neutron spectrum. Phys. Rev Lett. 122, 072503 (2019)

    ADS  Google Scholar 

  82. F. Tovesson, A. Laptev, T.S. Hill, Fast neutron–induced fission cross sections of 233, 234, 236, 238U up to 200 MeV. Nucl. Sci. Eng. 178, 57 (2014)

    ADS  Google Scholar 

  83. O.A. Shcherbakov et al., Neutron-induced fission of 233U, 238U, 237Np, 239Pu and 232Th in the energy range 1–200 MeV, in Proceedings of IX International Seminar Interaction of Neutrons with Nuclei (ISINN-9), vol. 192 (2001), p. 257

    Google Scholar 

  84. R. Nolte et al., Cross sections for neutron-induced fission of 235U, 238U, 209Bi, and natPb in the energy range from 33 to 200 MeV measured relative to n − p scattering. Nucl. Sci. Eng. 156, 197 (2007)

    ADS  Google Scholar 

  85. M. Blann, Preequilibrium decay. Annu. Rev. Nucl. Sci. 25, 123 (1975)

    ADS  Google Scholar 

  86. E. Gadioli, Pre-equilibrium Nuclear Reactions (Oxford University Press, Oxford, 1992)

    Google Scholar 

  87. G.S. Boikov, V.D. Dmitriev, G.A. Kudyaev, Y.B. Ostapenko, M.I. Svirin, Neutron spectra in 237Np fission induced by neutrons of energy 2.9 and 14.7 MeV. Sov J. Nucl. Phys. 53, 392 (1991)

    Google Scholar 

  88. K. Skarsvag, Time distribution of γ rays from spontaneous fission of 252Cf at short times. Nucl. Phys. A 253, 274 (1975)

    ADS  Google Scholar 

  89. P. Talou, T. Kawano, I. Stetcu, J. Lestone, E. McKigney, M. Chadwick, Late- time emission of prompt fission γ rays. Phys. Rev. C 94, 064613 (2016)

    ADS  Google Scholar 

  90. T.E. Valentine, Evaluation of prompt fission γ rays for use in simulating nuclear safeguard measurements. Ann. Nucl. Energy 28, 191 (2001)

    Google Scholar 

  91. A. Oberstedt, R. Billnert, F.-J. Hambsch, S. Oberstedt, Impact of low energy photons on the characteristics of prompt fission γ-ray spectra. Phys. Rev. C 92, 014618 (2015)

    ADS  Google Scholar 

  92. A. Chyzh et al., Total prompt γ-ray emission in fission of 235U, 239, 241Pu, and 252Cf. Phys. Rev. C 90, 014602 (2014)

    ADS  Google Scholar 

  93. S. Oberstedt et al., Prompt fission γ-ray spectra characteristics – a first summary. Phys. Proc. 64, 83 (2015)

    ADS  Google Scholar 

  94. A. Chyzh et al., Evidence for the stochastic aspect of prompt γ emission in sponta- neous fission. Phys. Rev. C 85, 021601(R) (2012)

    Google Scholar 

  95. T. Valentine, Evaluation of prompt fission gamma rays for use in simulating nu- clear safeguard measurements. Tech. Rep. ORNL/TN-1999/300 (Oak Ridge National Laboratory, Oak Ridge, 1999)

    Google Scholar 

  96. R. Billnert, F.-J. Hambsch, A. Oberstedt, S. Oberstedt, New prompt spectral gamma-ray data from the reaction 252Cf (sf) and its implication on present evaluated nuclear data files. Phys. Rev. C 87, 024601 (2013)

    ADS  Google Scholar 

  97. A. Gatera et al., Prompt-fission γ-ray spectra characteristics from 239Pu(nth,f). Phys. Rev. C 95, 064609 (2017)

    ADS  Google Scholar 

  98. A. Oberstedt et al., Improved values for the characteristics of prompt fission γ-ray spectra from the reaction 235U(nth,f). Phys. Rev. C 87, 051602 (2013)

    ADS  Google Scholar 

  99. V.V. Verbinski, H. Weber, R.E. Sund, Prompt gamma rays from 235U(n,f), 239Pu(n,f) and spontaneous fission of 252Cf. Phys. Rev. C 7, 1173 (1973)

    ADS  Google Scholar 

  100. A. Chyzh et al., Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: spontaneous vs. neutron-induced fission. Phys. Lett. B 782, 652 (2018)

    Google Scholar 

  101. E. Kwan et al., Prompt fission γ rays measured using liquid scintillators. Nucl. Data Sheets 119, 221 (2014)

    ADS  Google Scholar 

  102. J.-M. Laborie, G. Belier, J. Taieb, Measurement of prompt fission γ-ray spectra in fast neutron-induced fission. Phys. Proc. 31, 13 (2012)

    ADS  Google Scholar 

  103. L. Qi et al., Statistical study of the prompt-fission γ-ray spectrum for 238U(n,f) in the fast-neutron region. Phys. Rev. C 98, 014612 (2018)

    ADS  Google Scholar 

  104. S.J. Rose et al., Energy dependence of the prompt γ-ray emission from the (dp)- induced fission of 234U* and 240Pu*. Phys. Rev. C 96, 014601 (2017)

    ADS  Google Scholar 

  105. I. Stetcu, M.B. Chadwick, T. Kawano, P. Talou, R. Capote, A. Trkov, Evaluation of the prompt fission gamma properties for neutron induced fission of 235, 238U and 239Pu. Nucl. Data Sheets 163, 261 (2020)

    ADS  Google Scholar 

  106. F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Prompt gamma rays emitted in the thermal-neutron-induced fission of 235U. Phys. Rev. C 6, 1023 (1972)

    ADS  Google Scholar 

  107. A. Oberstedt, Private communication, Tech. Rep. (2017)

    Google Scholar 

  108. S. Oberstedt, Private communication. Tech. Rep. (2017)

    Google Scholar 

  109. R.W. Peelle, F.C. Maienschein, Spectrum of photons emitted in coincidence with fission of 235U by thermal neutrons. Phys. Rev. C 3, 373 (1971)

    ADS  Google Scholar 

  110. M. Jandel et al., Prompt gamma-ray emission in neutron induced fission of 235U. Tech. Rep. LA-UR-12-24795 (Los Alamos National Laboratory, New Mexico, 2012)

    Google Scholar 

  111. M. Lebois et al., Comparative measurement of prompt fission γ-ray emission from fast-neutron-induced fission of 235U and 238U. Phys. Rev. C 92, 034618 (2015)

    ADS  Google Scholar 

  112. F. Pleasonton, Prompt γ rays emitted in the thermal-neutron induced fission of 233U and 239Pu. Nucl. Phys. A 213, 413 (1973)

    ADS  Google Scholar 

  113. J.L. Ullmann et al., Prompt γ-ray production in neutron-induced fission of 239Pu. Phys. Rev. C 87, 044607 (2013)

    ADS  Google Scholar 

  114. H.D. Lemmel (ed.), Proceedings of IAEA Consultants Meeting on Physics of Neutron Emission in Fission (Mito, Japan, 1988)

    Google Scholar 

  115. J. Fréhaut, A. Bertin, R. Bois, Mesure de \(\bar {v}_p\) et \(\bar {E}_\gamma \) Pour la Fission de 232Th, 235U et 237Np Induite par des Neutrons D’Energie Comprise Entre 1 et 15 MeV, in Nuclear Data for Science and Technology ed. by K.H. Böckhoff (1983). p. 78

    Google Scholar 

  116. H. Nifenecker, C. Signarbieux, M. Ribrag, J. Poitou, J. Matuszek, Gamma- neutron competition in the de-excitation mechanism of the fission fragments of 252Cf. Nucl. Phys. A 189 285 (1972)

    ADS  Google Scholar 

  117. E. Nardi, A. Gavron, Z. Fraenkel, Total energy associated with prompt γ-ray emission in the spontaneous fission of 252Cf. Phys. Rev. C 8, 2293 (1973)

    ADS  Google Scholar 

  118. F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Prompt gamma rays emitted in the thermal neutron-induced fission of 233U,235U, and 239Pu and the spontaneous fission of 252Cf. Tech. Rep. ORNL Report 4844 (Oak Ridge National Laboratory, Oak Ridge, 1972), p. 109

    Google Scholar 

  119. S.A. Johansson, Gamma de-excitation of fission fragments: (i) prompt radiation. Nucl. Phys. 60, 378 (1964)

    Google Scholar 

  120. S.A.E. Johansson, Gamma de-excitation of fission fragments: (ii). Delayed radiation. Nucl. Phys. 64, 147 (1965)

    Google Scholar 

  121. W. John, J.J. Wesolowski, F. Guy, Mass-dependent structure in the fission γ-ray yields from 252Cf. Phys. Lett. B 30, 340 (1969)

    ADS  Google Scholar 

  122. H. Albinsson, L. Lindow, Prompt gamma radiation from fragments in the thermal fission of 235U. Tech. Rep. AE-398 (AB Atomenergi, Nykoeping, 1970)

    Google Scholar 

  123. J.N. Wilson et al., Angular momentum generation in nuclear fission. Nature 590, 566 (2021)

    ADS  Google Scholar 

  124. Y. Abdelrahman et al., Average spins of primary fission fragments. Phys. Lett. B 199, 504 (1987)

    ADS  Google Scholar 

  125. W. Reisdorf, J.P. Unik, H.C. Griffin, L.E. Glendenin, Fission fragment K x-ray emission and nuclear charge distribution for thermal neutron fission of 233U, 235U, 239Pu and spontaneous fission of 252Cf. Nucl. Phys. A 177, 337 (1971)

    ADS  Google Scholar 

  126. T. Granier et al., Measurement of prompt X-rays in 238U(n,f) from threshold to 400 MeV. Eur. Phys. J. A 49, 114 (2013)

    ADS  Google Scholar 

  127. S. DeBenedetti, J.E. Francis Jr., W.M. Preston, T.W. Bonner, Angular dependence of coincidences between fission neutrons. Phys. Rev. 74, 1645 (1948)

    ADS  Google Scholar 

  128. R. Vogt, J. Randrup, Neutron angular correlations in spontaneous and neutron- induced fission. Phys. Rev. C 90, 064623 (2014)

    ADS  Google Scholar 

  129. J.M. Verbeke, L.F. Nakae, R. Vogt, Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu. Phys. Rev. C 97, 044601 (2018)

    ADS  Google Scholar 

  130. S.S. Kapoor, R. Ramanna, P.N. Rama Rao, Emission of prompt neutrons in the thermal neutron fission of 235U. Phys. Rev. 131, 283 (1963)

    ADS  Google Scholar 

  131. K. Skarsvag, K. Bergheim, Energy and angular distributions of prompt neutrons from slow neutron fission of 235U. Nucl. Phys. 45, 72 (1963)

    Google Scholar 

  132. M.V. Bilnov, N.M. Kaharkov, I.T. Krisyuk, Sov. J. Nucl. Phys. 16, 634 (1973)

    Google Scholar 

  133. K. Skarsvag, Prompt neutrons from fission. Phys. Scr. 7, 160 (1973)

    ADS  Google Scholar 

  134. A.M. Gagarski et al., Neutron-neutron angular correlations in spontaneous fission of 252Cf. Bull. Rus. Acad. Sci. Phys. 72, 773 (2008)

    Google Scholar 

  135. S.A. Pozzi et al., Correlated neutron emissions from 252Cf. Nucl. Sci. Eng. 178, 250 (2014)

    ADS  Google Scholar 

  136. J.S. Pringle, F.D. Brooks, Angular correlation of neutrons from spontaneous fission of 252Cf. Phys. Rev. Lett. 35, 1563 (1975)

    ADS  Google Scholar 

  137. V.E. Sokolov et al., Investigations of the angular dependences of neutron - neutron coincidences from 252Cf, 235U, 233U and 239Pu fission in search of scission neutrons, in XVIII International Seminar on Interaction of Neutrons with Nuclei. Neutron Spectroscopy, Nuclear Structure, Related Topics (2010), p. 108

    Google Scholar 

  138. R. Vogt, J. Randrup, Event-by-event study of neutron observables in spontaneous and thermal fission. Phys. Rev. C 84, 044621 (2011)

    ADS  Google Scholar 

  139. P.F. Schuster et al., High resolution measurement of tagged two-neutron energy and angle correlations in 252Cf (sf). Phys. Rev. C 100, 014605 (2019)

    ADS  Google Scholar 

  140. J. Burggraf et al., Neutron-neutron correlations in the photofission of 238U. Phys. Rev. C 102, 014612 (2020)

    ADS  Google Scholar 

  141. P. Glässel, R. Schmid-Fabian, D. Schwalm, D. Habs, H.U.V. Helmolt, 252Cf fission revisited — new insights into the fission process. Nucl. Phys. A 502, 315 (1989)

    Google Scholar 

  142. D.L. Bleuel et al., Gamma-ray multiplicity measurement of the spontaneous fission of 252Cf in a segmented HPGe/BGO detector array. Nucl. Instrum. Methods Phys. Res. Sect. A 624, 691 (2010)

    ADS  Google Scholar 

  143. M.J. Marcath et al., Measured and simulated 252Cf(sf) prompt neutron-photon competition. Phys. Rev. C 97, 044622 (2018)

    ADS  Google Scholar 

  144. S. Marin et al., Event-by-event neutron–photon multiplicity correlations in 252Cf (sf). Nucl. Instrum. Methods Phys. Res. Sect. A 968, 163907 (2020)

    Google Scholar 

  145. T. Wang et al., Correlations of neutron multiplicity and γ-ray multiplicity with fragment mass and total kinetic energy in spontaneous fission of 252Cf. Phys. Rev. C 93, 014606 (2016)

    ADS  Google Scholar 

  146. A. Tudora, C. Morariu, F.-J. Hambsch, S. Oberstedt, C. Manailescu, Prompt gamma-ray energy in the frame of prompt neutron emission models. Phys. Proc. 31, 43 (2012)

    ADS  Google Scholar 

  147. F.-J. Hambsch, S. Oberstedt, A. Tudora, G. Vladuca, I. Ruskov, Prompt fission neutron multiplicity and spectrum evaluation for 235U(n,f) in the frame of the multi-modal fission model. Nucl. Phys. A 726, 248 (2003)

    ADS  Google Scholar 

  148. D. Shengyao, X. Jincheng, L. Zuhua, L. Shaoming, Z. Huanqiao, Measurement of \(\bar {v}(Z)\) for Cf-252 Spontaneous Fission. Chin. Phys. 4, 649 (1984)

    Google Scholar 

  149. V.P. Zakharova, D.K. Ryazanov, B.G. Basova, A.D. Rabinovich, V.A. Korostylev, Neutron yields from spontaneous fission of 252Cf. Sov. J. Nucl. Phys. 30, 19 (1979)

    Google Scholar 

  150. E.E. Maslin, A.L. Rodgers, W.G.F. Core, Prompt neutron emission from 235U fission fragments. Phys. Rev. 164, 1520 (1967)

    ADS  Google Scholar 

  151. S. Marin et al., Structure in the event-by-event energy-dependent neutron-γ multiplicity correlations in 252Cf (sf). Phys. Rev. C 104, 024602 (2021)

    ADS  Google Scholar 

  152. S. Marin et al., Directional-dependence of the event-by-event neutron-γ multiplicity correlations in 252Cf(sf). Phys. Rev. C 105, 054609 (2022)

    ADS  Google Scholar 

  153. A. Giaz et al., Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 825, 51 (2016)

    ADS  Google Scholar 

  154. H. Nifenecker, C. Signarbieux, R. Babinet, J. Poitou, in Third IAEA Symposium on the Physics and Chemistry of Fission, vol. II (Rochester, New York, 1973), p. 117

    Google Scholar 

  155. K. Jansson, A. Al-Adili, E. Andersson-Sundén, A. Göök, S. Oberstedt, S. Pomp, The impact of neutron emission on correlated fission data from the 2E-2v method. Eur. Phys. J. A 54, 114 (2018)

    ADS  Google Scholar 

  156. J. Terrell, Neutron yields from individual fission fragments. Phys. Rev. 127, 880 (1962)

    ADS  Google Scholar 

  157. C. Budtz-Jørgensen, H.H. Knitter, Simultaneous investigation of fission fragments and neutrons in 252Cf (sf). Nucl. Phys. A 490, 307 (1988)

    ADS  Google Scholar 

  158. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Fragment velocities, energies, and masses from fast neutron induced fission of 235U. Phys. Rev. C 29, 885 (1984)

    ADS  Google Scholar 

  159. A.S. Vorobyev, O.A. Shcherbakov, A.M. Gagarski, G.A. Petrov, G.V. Val’ski, Experimental determination of the yield of “scission” neutrons from the spontaneous fission of 252Cf. J. Exp. Theor. Phys. 125, 619 (2017)

    ADS  Google Scholar 

  160. Z. Fraenkel, I. Mayk, J.P. Unik, A.J. Gorski, W.D. Loveland, Measurement of pre- and post-fission neutron emission at moderate excitation energies. Phys. Rev. C 12, 1809 (1975)

    ADS  Google Scholar 

  161. V.M. Piksaikin, P.P. D’yachenko, L.S. Kutsaeva, Search for delayed neutrons with low energies in spontaneous fission of 252Cf. Sov. J. Nucl. Phys. 25, 385 (1977)

    Google Scholar 

  162. Y.S. Zamyatnin, D.K. Ryazanov, B.G. Basova, et al., Sov. J. Nucl. Phys. 29, 306 (1979)

    Google Scholar 

  163. P. Riehs, Measurement and analysis of prompt fission neutrons of 252Cf (sf). Acta Phys. Austriaca 53, 271 (1981)

    Google Scholar 

  164. D. Ward, R.J. Charity, D.J. Hinde, J.R. Leigh, J.O. Newton, Measurement of pre-fission neutrons from 200Pb; further limits to the statistical fission parameters. Nucl. Phys. A 403, 189 (1983)

    ADS  Google Scholar 

  165. E. Seregina, P. D’yachenko, Multi-parameter studies of prompt neutron emission process of the 252Cf spontaneous fission. Sov. J. Nucl. Phys. 42, 845 (1985)

    Google Scholar 

  166. H. Märten, Mechanisms of fission neutron emission. INDC(NDS) 251, (IAEA, 1991), p. 23

    Google Scholar 

  167. O. Batenkov, A. Blinov, M. Blinov, S. Smornov, Emission energy spectra of neutrons from spontaneous fission fragments. INDC(NDS)-220 207. IAEA Report (1989)

    Google Scholar 

  168. A. Vorobyev, O. Shcherbakov, Integral prompt neutron spectrum for fission of 235U by thermal neutrons. INDC(CCP)-0455 (IAEA, 2014)

    Google Scholar 

  169. A. Vorobyev, O. Sherbakov, A. Gagarski, G. Petrov, G. Val’ski, Angular and energy distributions of prompt fission neutrons from the thermal-neutron induced fission of 233U, 235U, and 239Pu and the spontaneous fission of 252Cf. Bull. Rus. Acad. Sci. Phys. 82, 1245 (2018)

    Google Scholar 

  170. P.W. Lisowski, K.F. Schoenberg, The Los Alamos neutron science center. Nucl. Instrum. Methods Phys. Res. Sect. A 562, 910 (2006)

    ADS  Google Scholar 

  171. C.Y. Wu, R.A. Henderson, R.C. Haight, A multiple parallel-plate avalanche counter for fission-fragment detection. Nucl. Instrum. Methods Phys. Res. Sect. A 794, 76 (2015)

    ADS  Google Scholar 

  172. B.A. Perdue et al., Development of an array of liquid scintillators to measure the prompt fission neutron spectrum at LANSCE. Nucl. Data Sheets 119, 371 (2014)

    ADS  Google Scholar 

  173. H.Y Lee, T. Taddeucci, R. Haight, et al., Li-glass detector response study with a 252Cf source for low-energy prompt fission neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 703, 213 (2013)

    Google Scholar 

  174. K.J. Kelly et al., Measurement of the 239Pu(n,f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by neutrons of energy 1–20 MeV. Phys. Rev. C 102, 034615 (2020)

    ADS  Google Scholar 

  175. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1 (2018)

    Google Scholar 

  176. J. Taieb, B. Laurent, G. Bélier, A. Sardet, C. Varignon, A new fission cham- ber dedicated to prompt fission neutron spectra measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 833, 1 (2016)

    ADS  Google Scholar 

  177. P. Marini et al., Prompt-fission-neutron spectra in the 239Pu(n,f) reaction. Phys. Rev C 101, 044614 (2020)

    ADS  Google Scholar 

  178. A.J.M. Plompen et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A 56, 181 (2020)

    Google Scholar 

  179. K. Shibata et al., JENDL-4.0: a new library for NSE. J. Nucl. Sci. Technol. 48, 1 (2011)

    Google Scholar 

  180. C. Matei, F.-J. Hambsch, S. Oberstedt, Neutron detector characterization for SCINTIA array, in 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications (2011), pp. 1–5

    Google Scholar 

  181. N.V. Kornilov, F.-J. Hambsch, A.S. Vorobyev, Neutron emission in fission. Nucl. Phys. A 789, 55 (2007)

    ADS  Google Scholar 

  182. S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Monte Carlo approach to sequential neutron emission from fission fragments. Phys. Rev. C 72, 024601 (2005)

    ADS  Google Scholar 

  183. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. Sect. A 362, 487 (1995)

    ADS  Google Scholar 

  184. A. Höcker, V. Kartvelishvili, SVD approach to data unfolding. Nucl. Instrum. Methods Phys. Res. Sect. A 372, 469 (1996)

    ADS  Google Scholar 

  185. A. Laszlo, A linear iterative unfolding method. J. Phys. Conf. Ser. 368, 012043 (2012)

    Google Scholar 

  186. S. Schmitt, Tunfold, an algorithm for correcting migration effects in high energy physics. J. Instrum. 7, T10003 (2012)

    Google Scholar 

  187. A. Chyzh et al., Unfolding the fission prompt gamma-ray energy and multiplicity distribution measured by DANCE. Tech. Rep. LLNL-TR-460216 (Lawrence Livermore National Laboratory, Livermore, 2010)

    Google Scholar 

  188. M. Travar et al., Experimental information on mass- and TKE-dependence of the prompt fission γ-ray multiplicity. Phys. Lett. B 817, 136293 (2021)

    Google Scholar 

  189. H. Maier-Leibnitz, H.W. Schmitt, P. Armbruster, in Proceedings of International Symposium Physics and Chemistry of Fission, Salzburg, vol. II, IAEA (1965)

    Google Scholar 

  190. S. Oberstedt et al., High-precision prompt γ-ray spectral data from the reaction 241Pu(nth,f). Phys. Rev. C 90, 024618 (2014)

    ADS  Google Scholar 

  191. R.S. Simon, The darmstadt-heidelberg crystal ball. J. Phys. Colloques 41, 281 (1980)

    Google Scholar 

  192. A. Hotzel et al., High-energy gamma rays accompanying the spontaneous fission of 252Cf. Z. Phys. A 356, 299 (1996)

    ADS  Google Scholar 

  193. Y.N. Kopach et al., Angular anisotropy of prompt γ rays and fragment spin alignment in binary and light-charged-particle-accompanied spontaneous fission of 252Cf. Phys. Rev. Lett. 82, 303 (1999)

    ADS  Google Scholar 

  194. J.B. Fitzgerald et al., Fragment mass dependence of the high-energy γ-ray spectrum in fission. Z. Phys. A: Hadrons Nucl. 355, 401 (1996)

    Google Scholar 

  195. H. van der Ploeg et al., Emission of photons in spontaneous fission of 252Cf. Phys. Rev. C 52, 1915 (1995)

    ADS  Google Scholar 

  196. H. Makii et al., Measurement of high-energy prompt gamma rays from neutron- induced fission of U-235. EPJ Web Conf. 146, 04036 (2017)

    Google Scholar 

  197. H. Makii et al., Development of a measurement system for the determination of (n, γ) cross-sections using multi-nucleon transfer reactions. Nucl. Instrum. Methods Phys. Res. Sect. A 797, 83 (2015)

    ADS  Google Scholar 

  198. M.J. Marcath, T.H. Shin, S.D. Clarke, P. Peerani, S.A. Pozzi, Neutron angular distribution in plutonium-240 spontaneous fission. Nucl. Instrum. Methods Phys. Res. Sect. A 830, 163 (2016)

    ADS  Google Scholar 

  199. T. Ericson, The statistical model and nuclear level densities. Adv. Phys. 9, 425 (1960)

    ADS  Google Scholar 

  200. V.P. Éismont, Neutrons from the fission of excited nuclei. Sov. At. Energy 19, 1000 (1965)

    Google Scholar 

  201. E. Nardi, Z. Fraenkel, Neutron emission in alpha-particle accompanied fission. Phys. Rev. C 2, 1156 (1970)

    ADS  Google Scholar 

  202. H. Hongyin, H. Shengnien, H. Jiangchen, B. Zongyu, Y. Zongyuan, Neutron and gamma-ray emission in Cf-252 ternary fission, in Proceedings of IAEA Consultants Meeting on Physics of Neutron Emission in Fission, vol. INDC(NDS)-220 (1988), p. 113

    Google Scholar 

  203. I. Halpern, Three fragment fission. Ann. Rev. Nucl. Sci. 21, 245 (1971)

    ADS  Google Scholar 

  204. R. Vandenbosch, J.R. Huizenga, Chapter XIV - ternary fission, in Nuclear Fission, ed. by R. Vandenbosch, J.R. Huizenga (Academic Press, Cambridge, 1973), p. 374

    Google Scholar 

  205. H. Piekarz, J. Blocki, T. Krogulski, E. Piasecki, Investigation of prompt neutrons accompanying spontaneous ternary fission of 252Cf. Nucl. Phys. A 146, 273 (1970)

    ADS  Google Scholar 

  206. V.M. Adamov, L.V. Drapchinskii, S.S. Kovalenko, K.A. Petrazhak, I.I. Tyutyugin, Neutrons and γ-quanta in the spontaneous ternary fission of 244Cm. Yad. Fiz. 5, 42 (1967)

    Google Scholar 

  207. N.N. Ajitanand, Prompt gamma-ray emission in the spontaneous ternary fission of 252Cf. Nucl. Phys. A 133, 625 (1969)

    ADS  Google Scholar 

  208. C.B. Franklyn, C. Hofmeyer, D.W. Mingay, Angular correlation of neutrons from thermal-neutron fission of U-235. Phys. Lett. 78B, 564 (1978)

    ADS  Google Scholar 

  209. N.V. Kornilov, A.B. Kagalenko, S.V. Poupko, P.A. Androsenko, F.-J. Hambsch, New evidence of an intense scission neutron source in the Cf-252 spontaneous fission. Nucl. Phys. A 686, 187 (2001)

    ADS  Google Scholar 

  210. A.S. Vorobyev et al., Angular and energy distributions of prompt neutrons from thermal neutron-induced fission of 233, 235U(nth,f), in Proceedings of XVII International Seminar Interaction of Neutrons with Nuclei (ISINN-17) (2009), p. 60

    Google Scholar 

  211. A.M. Gagarski, I.S. Guseva, G.V. Val’ski, G.A. Petrov, V.I. Petrova, T.A. Zavarukhina, Determination of a scission neutron yield in 252Cf spontaneous fission from the experiment on measuring the angular dependence of coincidences between fission neutrons, in Proceedings of XX International Seminar Interaction of Neutrons with Nuclei (ISINN-20) (2013), p. 40

    Google Scholar 

  212. A. Chietera, Angular correlations between fragments and neutrons in the spontaneous fission of 252Cf. Ph.D. Thesis. University of Strasbourg (2015)

    Google Scholar 

  213. I.S. Guseva et al., Detailed investigations of neutron–neutron angular correlations in slow-neutron-induced fission of 233U, 235U, and 239Pu. Phys. At. Nucl. 81, 447 (2018)

    Google Scholar 

  214. Stuttgé, L. et al., Neutron anisotropic evaporation and scission emission in fission. EPJ Web. Conf. 193 03001 (2018)

    Google Scholar 

  215. U. Köster, H. Faust, G. Fioni, T. Friedrichs, M. Groß, S. Oberstedt, Ternary fission yields of 241Pu(nth,f). Nucl. Phys. A 652, 371 (1999)

    ADS  Google Scholar 

  216. R.W. Fuller, Dependence of neutron production in fission on rate of change of nuclear potential. Phys. Rev. 126, 684 (1962)

    ADS  Google Scholar 

  217. N. Carjan, P. Talou, O. Serot, Emission of scission neutrons in the sudden approximation. Nucl. Phys. A 792, 102 (2007)

    ADS  Google Scholar 

  218. N. Carjan, F.-J. Hambsch, M. Rizea, O. Serot, Partition between the fission fragments of the excitation energy and of the neutron multiplicity at scission in low-energy fission. Phys. Rev. C 85, 044601 (2012)

    ADS  Google Scholar 

  219. N. Carjan, M. Rizea, Similarities between calculated scission-neutron properties and experimental data on prompt fission neutrons. Phys. Lett. B 747, 178 (2015)

    ADS  Google Scholar 

  220. N. Carjan, M. Rizea, Structures in the energy distribution of the scission neutrons: finite neutron-number effect. Phys. Rev. C 99, 034613 (2019)

    ADS  Google Scholar 

  221. T. Wada, T. Asano, N. Carjan, Angular distribution of scission neutrons studied with time-dependent Schrödinger equation. EPJ Web Conf. 169, 00029 (2018)

    Google Scholar 

  222. R. Capote, N. Carjan, S. Chiba, Scission neutrons for U. Pu, Cm, and Cf isotopes: relative multiplicities calculated in the sudden limit. Phys. Rev. C 93, 024609 (2016)

    Google Scholar 

  223. R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W.E. Ormand, Event-by event evaluation of the prompt fission neutron spectrum from 239Pu(n,f). Phys. Rev. C 85, 024608 (2012)

    ADS  Google Scholar 

  224. A. Tudora, G. Vladuca, B. Morillon, Prompt fission neutron multiplicity and spectrum model for 30–80 MeV neutrons incident on 238U. Nucl. Phys. A 740, 33 (2004)

    ADS  Google Scholar 

  225. J.J. Griffin, Statistical model of intermediate structure. Phys. Rev. Lett. 17, 478 (1966)

    ADS  Google Scholar 

  226. V.F. Weisskopf, Statistics and nuclear reactions. Phys. Rev. 52, 295 (1937)

    ADS  MATH  Google Scholar 

  227. A. Oberstedt, R. Billnert, A. Gatera, A. Göök, S. Oberstedt, Prompt gamma rays from 252Cf (sf) and their angular distributions. EPJ Web Conf. 169, 00014 (2018)

    Google Scholar 

  228. F. Bloch, H. Staub, Fission spectrum (unpublished). U.S. Atomic Energy Commission Document, AECD-3158 (1943)

    Google Scholar 

  229. N.V. Kornilov, A.B. Kagalenko, F.J. Hambsch, Computing the spectra of prompt fission neutrons on the basis of a new systematics of experimental data. Phys. Atom. Nuclei 62, 173 (1999)

    ADS  Google Scholar 

  230. F.-J. Hambsch, A. Tudora, G. Vladuca, S. Oberstedt, Prompt fission neutron spectrum evaluation for 252Cf (SF) in the frame of the multi-modal fission model. Ann. Nucl. Energy 32, 1032 (2005)

    Google Scholar 

  231. J. Terrell, Fission neutron spectra and nuclear temperatures. Phys. Rev. 113, 527 (1959)

    ADS  MathSciNet  Google Scholar 

  232. U. Brosa, S. Grossmann, A. Müller, Nuclear scission. Phys. Rep. 197, 167 (1990)

    ADS  Google Scholar 

  233. G. Vladuca, A. Tudora, Improved Los Alamos model applied to the neutron- induced fission of 235U and 237Np. Ann. Nucl. Energy 28, 419 (2001)

    Google Scholar 

  234. A. Tudora, F.-J. Hambsch, Comprehensive overview of the point-by-point model of prompt emission in fission. Eur. Phys. J. A 53, 159 (2017)

    ADS  Google Scholar 

  235. S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Monte Carlo approach to sequential γ-ray emission from fission fragments. Phys. Rev. C 73, 014602 (2006)

    ADS  Google Scholar 

  236. R. Capote et al., RIPL - reference input parameter library for calculations of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110, 3107 (2009)

    ADS  Google Scholar 

  237. P. Talou, I. Stetcu, P. Jaffke, M.E. Rising, A.E. Lovell, T. Kawano, Fission fragment decay simulations with the CGMF code. Comput. Phys. Commun. 269, 108087 (2021)

    MathSciNet  Google Scholar 

  238. P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on 239Pu. Phys. Rev. C 83, 064612 (2011)

    ADS  Google Scholar 

  239. B. Becker, P. Talou, T. Kawano, Y. Danon, I. Stetcu, Monte Carlo Hauser Feshbach predictions of prompt fission γ rays: application to nth +235U, nth +239Pu, and 252Cf (sf). Phys. Rev. C 87, 014617 (2013)

    ADS  Google Scholar 

  240. O. Litaize, O. Serot, Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and γ emission. Phys. Rev. C 82, 054616 (2010)

    ADS  Google Scholar 

  241. D. Regnier, O. Litaize, O. Serot, Monte carlo simulation of prompt fission gamma emission. Phys. Proc. 31, 59 (2012)

    ADS  Google Scholar 

  242. D. Regnier, O. Litaize, O. Serot, Preliminary results of a full hauser-feshbach simulation ot the prompt neutron and gamma emission from fission fragments. Phys. Proc. 47, 47 (2013)

    ADS  Google Scholar 

  243. O. Litaize, O. Serot, L. Bergé, Fission modeling with FIFRELIN. Eur. Phys. J. A 51, 177 (2015)

    ADS  Google Scholar 

  244. J.M. Verbeke, J. Randrup, R. Vogt, Fission reaction event yield algorithm, FREYA - for event-by-event simulation of fission. Comput. Phys. Commun. 191, 178 (2015)

    ADS  Google Scholar 

  245. J. Verbeke, J. Randrup, R. Vogt, Fission reaction event yield algorithm FREYA 2.0.2. Comput. Phys. Commun. 222, 263 (2018)

    Google Scholar 

  246. J. Randrup, R. Vogt, Calculation of fission observables through event-byevent simulation. Phys. Rev. C 80, 024601 (2009)

    ADS  Google Scholar 

  247. R. Vogt, J. Randrup, Event-byevent study of photon observables in spontaneous and thermal fission. Phys. Rev. C 87, 044602 (2013)

    ADS  Google Scholar 

  248. R. Vogt, J. Randrup, Improved modeling of photon observables with the event-by-event fission model FREYA. Phys. Rev. C 96, 064620 (2017)

    ADS  Google Scholar 

  249. K.H. Schmidt, B. Jurado, C. Amouroux, General description of fission observables: GEF model. JEFF Report 24, Nuclear Energy Agency (2014)

    Google Scholar 

  250. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107 (2016)

    ADS  Google Scholar 

  251. J. Randrup, P. Möller, Brownian shape motion on five-dimensional potential- energy surfaces: nuclear fission-fragment mass distributions. Phys. Rev. Lett. 106, 132503 (2011)

    ADS  Google Scholar 

  252. J. Randrup, P. Möller, Energy dependence of fission-fragment mass distributions from strongly damped shape evolution. Phys. Rev. C 88, 064606 (2013)

    ADS  Google Scholar 

  253. P. Jaffke, P. Möller, P. Talou, A.J. Sierk, Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields. Phys. Rev. C 97, 034608 (2018)

    ADS  Google Scholar 

  254. N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  255. A.C. Wahl, Systematics of fission product yields. Tech. Rep. LA-13928. Los Alamos National Laboratory (2002)

    Google Scholar 

  256. G. Audi et al., The AME2012 atomic mass evaluation. Chin. Phys. C 36, 1287 (2012)

    Google Scholar 

  257. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). Tech. Rep. LA-UR-15-26310; arXiv:1508.06294. Los Alamos National Laboratory (2015)

    Google Scholar 

  258. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87 366 (1952)

    ADS  MATH  Google Scholar 

  259. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003)

    ADS  Google Scholar 

  260. J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 41, 1941 (1990)

    ADS  Google Scholar 

  261. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Phenomenological description of the energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  262. A.J. Koning, S. Hilaire, M.C. Duijvestijn, Talys-1.0, in EPJ Web of Conferences, Proceedings of International Conference on Nuclear Data for Science and Technology, 22–27 Apr., 2007, Nice, ed. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, vol. 211 (2008)

    Google Scholar 

  263. J. Randrup, P. Talou, R. Vogt, Sensitivity of neutron observables to the model input in simulations of 252Cf(sf). Phys. Rev. C 99, 054619 (2019)

    ADS  Google Scholar 

  264. J. Randrup, Theory of transfer-induced transport in nuclear collisions. Nucl. Phys. A 327, 490 (1979)

    ADS  Google Scholar 

  265. J. Randrup, Transport of angular momentum in damped nuclear reactions. Nucl. Phys. A 383, 468 (1982)

    ADS  Google Scholar 

  266. W.U. Schröder, J.R. Huizenga, Damped nuclear reactions, in Treatise on Heavy-Ion Science: Volume 2 Fusion and Quasi-Fusion Phenomena, ed. by D.A. Bromley (Springer, Boston, 1985), p. 113

    Google Scholar 

  267. J. Blocki et al., One-body dissipation and the super-viscidity of nuclei. Ann. Phys. 113, 330 (1978)

    ADS  Google Scholar 

  268. T. Døssing, J. Randrup, Dynamical evolution of angular momentum in damped nuclear reactions: (I). Accumulation of angular momentum by nucleon transfer. Nucl. Phys. A 433, 215 (1985)

    Google Scholar 

  269. T. Døssing, J. Randrup, Dynamical evolution of angular momentum in damped nuclear reactions: (II). Observation of angular momentum through sequential decay. Nucl. Phys. A 433, 280 (1985)

    Google Scholar 

  270. L.G. Moretto, R.P. Schmitt, Equilibrium statistical treatment of angular momenta associated with collective modes in fission and heavy-ion reactions. Phys. Rev. C 21, 204 (1980)

    ADS  Google Scholar 

  271. K.-H. Schmidt, B. Jurado, Inconsistencies in the description of pairing effects in nuclear level densities. Phys. Rev. C 86, 044322 (2012)

    ADS  Google Scholar 

  272. J.R. Huizenga, R. Vandenbosch, Interpretation of isomeric cross-section ratios for (n, γ) and (γ, n) Reactions. Phys. Rev. 120, 1305 (1960)

    ADS  Google Scholar 

  273. A.R. Junghans, G. Rusev, R. Schwengner, A. Wagner, E. Grosse, Photon data shed new light upon the GDR spreading width in heavy nuclei. Phys. Lett. B 670, 200 (2008)

    ADS  Google Scholar 

  274. M.S. Zucker, N.E. Holden, Energy dependence of the neutron multiplicity Pv in fast neutron-induced fission of 235, 238 U and 239Pu. Tech. Rep. BNL-38491, Brookhaven National Laboratory (1986)

    Google Scholar 

  275. C. Morariu, A. Tudora, F.-J. Hambsch, S. Oberstedt, C. Manailescu, Modelling of the total excitation energy partition including fragment deformation and excitation energies at scission. J. Phys. G: Nucl. Phys. 39, 055103 (2012)

    ADS  Google Scholar 

  276. H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Further studies of the prompt neutrons from the spontaneous fission of 252Cf. Phys. Rev. 129, 2133 (1963)

    ADS  Google Scholar 

  277. F.-J. Hambsch et al., Investigation of the fission process at IRMM. J. Korean Phys. Soc. 59, 1654 (2011)

    ADS  Google Scholar 

  278. A.E. Lovell, P. Talou, I. Stetcu, K.J. Kelly, Correlations between fission fragment and neutron anisotropies in neutron-induced fission. Phys. Rev. C 102, 024621 (2020)

    ADS  Google Scholar 

  279. A. Bohr, On the theory of nuclear fission, in International Conference on the Peaceful Uses of Atomic Energy, ed. by N. Y. United Nations, vol. 2 (1956), p. 151

    Google Scholar 

  280. G.A. Petrov, Current status of the search for scission neutrons in fission and estimation of their main characteristics, in Third International Workshop on Nuclear Fission and Fission-Product Spectroscopy, Cadarache, France, May 11–14 (2005)

    Google Scholar 

  281. R. Vogt, J. Randrup, Angular momentum effects in fission. Phys. Rev. C 103, 014610 (2021)

    ADS  Google Scholar 

  282. A. Göök, W. Geerts, F.-J. Hambsch, S. Oberstedt, M. Vidali, S. Zeynalov, A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments. Nucl. Instrum. Methods Phys. Res. Sect. A 830, 366 (2016)

    ADS  Google Scholar 

  283. M. Jandel et al., Prompt fission gamma-ray studies at DANCE. Phys. Proc. 59, 101 (2014)

    ADS  Google Scholar 

  284. J. Van Dyke, L.A. Bernstein, R. Vogt, Parameter optimization and uncertainty analysis of FREYA for spontaneous fission. Nucl. Instrum. Methods Phys. Res. Sect. A 922, 36 (2019)

    ADS  Google Scholar 

  285. J. Randrup, R. Vogt, Generation of fragment angular momentum in fission. Phys. Rev. Lett. 127, 062502 (2021)

    ADS  Google Scholar 

  286. S.A. Pozzi, E. Padovani, M. Marseguerra, MCNP-PoliMi: a Monte Carlo Code for correlation measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 513, 550 (2003)

    ADS  Google Scholar 

  287. S.A. Pozzi et al., MCNPX-PoliMi for nuclear nonproliferation applications. Nucl. Instrum. Methods Phys. Res. Sect. A 694, 119 (2012)

    ADS  Google Scholar 

  288. R.B. Roberts, R.C. Meyer, P. Wang, Further observations on the splitting of Uranium and Thorium. Phys. Rev. 55 510 (1939)

    ADS  Google Scholar 

  289. R.B. Roberts, L.R. Hafstad, R.C. Meyer, P. Wang, The delayed neutron emission which accompanies fission of Uranium and Thorium. Phys. Rev. 55 664 (1939)

    ADS  MATH  Google Scholar 

  290. E.T. Booth, J.R. Dunning, F.G. Slack, Delayed neutron emission from Uranium. Phys. Rev. 55, 876 (1939)

    ADS  MATH  Google Scholar 

  291. E.E. Lewis, Fundamentals of Nuclear Reactor Physics (Elsevier, Amsterdam, 2008).

    Google Scholar 

  292. I. Dillmann, A. Tarifeño-Saldivia, The “Beta-Delayed Neutrons at RIKEN” Project (BRIKEN): conquering the most exotic beta-delayed neutron-emitters. Nucl. Phys. News 28, 28 (2018)

    ADS  Google Scholar 

  293. J. Liang et al., Compilation and evaluation of beta-delayed neutron emission probabilities and half-lives for Z >  28 precursors. Nucl. Data Sheets 168, 1 (2020)

    ADS  Google Scholar 

  294. K.-L. Kratz, Relevance of β-delayed neutron data for reactor nuclear physics and astrophysics applications. AIP Conf. Proc. 1645, 109 (2015)

    ADS  Google Scholar 

  295. M.A. Kellett, O. Bersillon, R.W. Mills, The JEFF-3.1/63.1.1 radioactive decay data and fission yields sub-libraries. JEFF Report 20, OECD/NEA (2009)

    Google Scholar 

  296. G. Rudstam, P. Finck, A. Filip, A. D’Angelo, R.D. McKnight, Delayed neutron data for the major actinides. Tech. Rep. OECD/NEA (2002)

    Google Scholar 

  297. D. Foligno et al., Measurement of the delayed-neutron multiplicity and time constants in the thermal neutron induced fission of 235U at ILL. Eur. Phys. J. Web Conf. 239, 18006 (2020)

    Google Scholar 

  298. L. Mathieu et al., New neutron long-counter for delayed neutron investigations with the LOHENGRIN fission fragment separator. J. Instrum. 7, P08029 (2012)

    Google Scholar 

  299. T. Kawano, P. Möller, W.B. Wilson, Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation–Hauser-Feshbach model. Phys. Rev. C 78, 054601 (2008)

    ADS  Google Scholar 

  300. T.K. Lane, E.J. Parma, Delayed fission γ-ray characteristics of Th-232, U-233, U-235, U-238 and Pu-239. Tech. Rep. SAND2015-7024, Sandia National Laboratories (2015)

    Google Scholar 

  301. G. Rusev et al., Late gamma rays from neutron-induced fission and capture from 235U, in Proceedings of the 6th International Workshop on Compound-Nuclear Reactions and Related Topics, ed. by I. Press (2018). ISBN-10: 3030596400

    Google Scholar 

  302. R. Reifarth et al., Background identification and suppression for the measurement of (n, γ) reactions with the DANCE array at LANSCE. Nucl. Instrum. Methods Phys. Res. Sect. A 531, 530 (2004)

    ADS  Google Scholar 

  303. M. Jandel et al., Correlated fission data measurements with DANCE and NEUANCE. Nucl. Instrum. Methods Phys. Res. Sect. A 882, 105 (2018)

    ADS  Google Scholar 

  304. A. D’Angelo, Overview of the delayed neutron data activities and results monitored by the NEA/WPEC subgroup 6. Prog. Nucl. Energy 41, 5 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devlin, M., Göök, A., Serot, O., Talou, P., Vogt, R. (2023). Prompt and Delayed Emission. In: Talou, P., Vogt, R. (eds) Nuclear Fission. Springer, Cham. https://doi.org/10.1007/978-3-031-14545-2_3

Download citation

Publish with us

Policies and ethics