Skip to main content

Radionuclides in the Diagnosis and Therapy in Neuro-Oncology

  • Chapter
  • First Online:
Radiopharmaceuticals in the Management of Leptomeningeal Metastasis
  • 159 Accesses

Abstract

Unfortunately, even which the most up-to-date standard of care treatment for patients with malignant brain tumors, especially high grade, the prognosis is very poor. PET/CT imaging with new radiopharmaceuticals can provide a noninvasive insight into the different aspects of tumor cell biology, assessing the changes that take place over time, to facilitate clinical management and prognostication. The use of new PET radiopharmaceuticals can more accurately provide a diagnosis of true tumor extend, tumor recurrence, and true response to a multitude of different molecular targeted treatments including radiation therapy. Moreover, PET/CT imaging is instrumental for the combination of diagnostics and therapy (theranostics).

As shown by many different publications radionuclide therapy provides targeted delivery of a potent radionuclide payload, as a unique mechanism of action by which a significant radiation dose is delivered to the desired tumor tissues with minimum systemic toxicity. In combination with PET/CT and PET/MRI imaging, it has the potential to facilitate personalized cancer treatment. However, there is a pressing need for well-designed clinical trials, to ascertain the toxicity profile, best dosing schedule, and treatment combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Wesseling P, Capper D. WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50. https://doi.org/10.1111/nan.12432.

    Article  CAS  PubMed  Google Scholar 

  3. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18(9):1199–208. https://doi.org/10.1093/neuonc/now058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, et al. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics. 2021;11(16):7911–47. https://doi.org/10.7150/thno.56639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shooli H, Nemati R, Ahmadzadehfar H, Aboian M, Jafari E, Jokar N, et al. Theranostics in brain tumors. PET Clin. 2021;16(3):397–418. https://doi.org/10.1016/j.cpet.2021.03.005.

    Article  PubMed  Google Scholar 

  6. Chamberlain MC. Leptomeningeal metastases: a review of evaluation and treatment. J Neurooncol. 1998;37(3):271–84. https://doi.org/10.1023/a:1005976926058.

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain MC. Leptomeningeal metastasis. Curr Opin Oncol. 2010;22(6):627–35. https://doi.org/10.1097/CCO.0b013e32833de986.

    Article  PubMed  Google Scholar 

  8. Chamberlain MC. Spinal 111Indium-DTPA CSF flow studies in leptomeningeal metastasis. J Neurooncol. 1995;25(2):135–41. https://doi.org/10.1007/bf01057757.

    Article  CAS  PubMed  Google Scholar 

  9. Chamberlain MC. Neoplastic meningitis. Oncologist. 2008;13(9):967–77. https://doi.org/10.1634/theoncologist.2008-0138.

    Article  PubMed  Google Scholar 

  10. Weber W, Bartenstein P, Gross MW, Kinzel D, Daschner H, Feldmann HJ, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38(5):802–8.

    CAS  PubMed  Google Scholar 

  11. Rani N, Singh B, Kumar N, Singh P, Hazari PP, Jaswal A, et al. The diagnostic performance of 99mTc-methionine single-photon emission tomography in grading glioma preoperatively: a comparison with histopathology and Ki-67 indices. Nucl Med Commun. 2020;41(9):848–57. https://doi.org/10.1097/mnm.0000000000001230.

    Article  CAS  PubMed  Google Scholar 

  12. Rainer E, Wang H, Traub-Weidinger T, Widhalm G, Fueger B, Chang J, et al. The prognostic value of [(123)I]-vascular endothelial growth factor ([(123)I]-VEGF) in glioma. Eur J Nucl Med Mol Imaging. 2018;45(13):2396–403. https://doi.org/10.1007/s00259-018-4088-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD, et al. TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med. 2015;56(9):1386–90. https://doi.org/10.2967/jnumed.115.158998.

    Article  CAS  PubMed  Google Scholar 

  14. Hockaday DC, Shen S, Fiveash J, Raubitschek A, Colcher D, Liu A, et al. Imaging glioma extent with 131I-TM-601. J Nucl Med. 2005;46(4):580–6.

    CAS  PubMed  Google Scholar 

  15. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB, Fiveash JB, et al. Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol. 2006;24(22):3644–50. https://doi.org/10.1200/jco.2005.05.4569.

    Article  CAS  PubMed  Google Scholar 

  16. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003;9(2):571–9.

    CAS  PubMed  Google Scholar 

  17. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9. https://doi.org/10.1212/wnl.32.12.1323.

    Article  PubMed  Google Scholar 

  18. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62(6):816–22. https://doi.org/10.3171/jns.1985.62.6.0816.

    Article  CAS  PubMed  Google Scholar 

  19. Özütemiz C, Neil EC, Tanwar M, Rubin NT, Ozturk K, Cayci Z. The role of dual-phase FDG PET/CT in the diagnosis and follow-up of brain tumors. AJR Am J Roentgenol. 2020;215(4):985–96. https://doi.org/10.2214/ajr.19.22571.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tripathi M, Sharma R, D’Souza M, Jaimini A, Panwar P, Varshney R, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34(12):878–83. https://doi.org/10.1097/RLU.0b013e3181becfe0.

    Article  PubMed  Google Scholar 

  21. Galldiks N, Lohmann P, Albert NL, Tonn JC, Langen KJ. Current status of PET imaging in neuro-oncology. Neurooncol Adv. 2019;1(1):vdz010. https://doi.org/10.1093/noajnl/vdz010.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Filss CP, Cicone F, Shah NJ, Galldiks N, Langen KJ. Amino acid PET and MR perfusion imaging in brain tumours. Clin Transl Imaging. 2017;5(3):209–23. https://doi.org/10.1007/s40336-017-0225-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Misch M, Guggemos A, Driever PH, Koch A, Grosse F, Steffen IG, et al. (18)F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Childs Nerv Syst. 2015;31(2):261–7. https://doi.org/10.1007/s00381-014-2552-y.

    Article  PubMed  Google Scholar 

  24. Rosenfeld A, Etzl M, Bandy D, Carpenteri D, Gieseking A, Dvorchik I, et al. Use of positron emission tomography in the evaluation of diffuse intrinsic brainstem gliomas in children. J Pediatr Hematol Oncol. 2011;33(5):369–73. https://doi.org/10.1097/MPH.0b013e31820ad915.

    Article  PubMed  Google Scholar 

  25. Pafundi DH, Laack NN, Youland RS, Parney IF, Lowe VJ, Giannini C, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013;15(8):1058–67. https://doi.org/10.1093/neuonc/not002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grosu AL, Astner ST, Riedel E, Nieder C, Wiedenmann N, Heinemann F, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81(4):1049–58. https://doi.org/10.1016/j.ijrobp.2010.07.002.

    Article  CAS  PubMed  Google Scholar 

  27. Kebir S, Fimmers R, Galldiks N, Schäfer N, Mack F, Schaub C, et al. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Cancer Res. 2016;22(9):2190–6. https://doi.org/10.1158/1078-0432.Ccr-15-1334.

    Article  CAS  PubMed  Google Scholar 

  28. Zikou A, Sioka C, Alexiou GA, Fotopoulos A, Voulgaris S, Argyropoulou MI. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging. 2018;2018:6828396. https://doi.org/10.1155/2018/6828396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsiouris S, Bougias C, Fotopoulos A. Principles and current trends in the correlative evaluation of glioma with advanced MRI techniques and PET. Hell J Nucl Med. 2019;22(3):206–19.

    PubMed  Google Scholar 

  30. Långström B, Antoni G, Gullberg P, Halldin C, Malmborg P, Någren K, et al. Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med. 1987;28(6):1037–40.

    PubMed  Google Scholar 

  31. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35. https://doi.org/10.1007/s00259-012-2295-5.

    Article  CAS  PubMed  Google Scholar 

  32. Okochi Y, Nihashi T, Fujii M, Kato K, Okada Y, Ando Y, et al. Clinical use of (11)C-methionine and (18)F-FDG-PET for germinoma in central nervous system. Ann Nucl Med. 2014;28(2):94–102. https://doi.org/10.1007/s12149-013-0787-4.

    Article  CAS  PubMed  Google Scholar 

  33. Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2005;32(1):39–51. https://doi.org/10.1007/s00259-004-1564-3.

    Article  CAS  PubMed  Google Scholar 

  34. Mansoor NM, Thust S, Militano V, Fraioli F. PET imaging in glioma: techniques and current evidence. Nucl Med Commun. 2018;39(12):1064–80. https://doi.org/10.1097/mnm.0000000000000914.

    Article  PubMed  Google Scholar 

  35. Kim MM, Parolia A, Dunphy MP, Venneti S. Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nat Rev Clin Oncol. 2016;13(12):725–39. https://doi.org/10.1038/nrclinonc.2016.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15(3):341–51. https://doi.org/10.1093/neuonc/nos300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39(6):1021–9. https://doi.org/10.1007/s00259-012-2109-9.

    Article  CAS  PubMed  Google Scholar 

  38. Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nussbaumer K, et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur J Nucl Med Mol Imaging. 2010;37(8):1521–8. https://doi.org/10.1007/s00259-010-1457-6.

    Article  PubMed  Google Scholar 

  39. Mehrkens JH, Pöpperl G, Rachinger W, Herms J, Seelos K, Tatsch K, et al. The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol. 2008;88(1):27–35. https://doi.org/10.1007/s11060-008-9526-4.

    Article  CAS  PubMed  Google Scholar 

  40. Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AA, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med. 2014;55(1):30–6. https://doi.org/10.2967/jnumed.113.121418.

    Article  CAS  PubMed  Google Scholar 

  41. Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015;17(9):1293–300. https://doi.org/10.1093/neuonc/nov088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceccon G, Lohmann P, Stoffels G, Judov N, Filss CP, Rapp M, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. 2017;19(2):281–8. https://doi.org/10.1093/neuonc/now149.

    Article  CAS  PubMed  Google Scholar 

  43. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–50., s1-11. https://doi.org/10.3174/ajnr.A3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y, et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One. 2015;10(7):e0132515. https://doi.org/10.1371/journal.pone.0132515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salber D, Stoffels G, Pauleit D, Oros-Peusquens AM, Shah NJ, Klauth P, et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med. 2007;48(12):2056–62. https://doi.org/10.2967/jnumed.107.046615.

    Article  CAS  PubMed  Google Scholar 

  46. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7(274):274ra17. https://doi.org/10.1126/scitranslmed.aaa1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu X, Zhu H, Liu F, Zhang Y, Yang J, Zhang L, et al. Imaging brain metastasis patients with 18F-(2S,4R)-4-fluoroglutamine. Clin Nucl Med. 2018;43(11):e392–e9. https://doi.org/10.1097/rlu.0000000000002257.

    Article  PubMed  Google Scholar 

  48. Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging. 2006;33(5):516–24. https://doi.org/10.1007/s00259-005-0002-5.

    Article  CAS  PubMed  Google Scholar 

  49. Herholz K, Kracht LW, Heiss WD. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging. 2003;13(3):269–71.

    Article  CAS  PubMed  Google Scholar 

  50. Roelcke U, Wyss MT, Nowosielski M, Rudà R, Roth P, Hofer S, et al. Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro Oncol. 2016;18(5):744–51. https://doi.org/10.1093/neuonc/nov282.

    Article  CAS  PubMed  Google Scholar 

  51. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52(6):856–64. https://doi.org/10.2967/jnumed.110.086645.

    Article  CAS  PubMed  Google Scholar 

  52. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40(1):22–33. https://doi.org/10.1007/s00259-012-2251-4.

    Article  CAS  PubMed  Google Scholar 

  53. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20(13):3550–9. https://doi.org/10.1158/1078-0432.Ccr-13-1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ceccon G, Lazaridis L, Stoffels G, Rapp M, Weber M, Blau T, et al. Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: initial experience. Eur J Nucl Med Mol Imaging. 2018;45(9):1626–35. https://doi.org/10.1007/s00259-018-3992-5.

    Article  PubMed  Google Scholar 

  55. Gérard M, Corroyer-Dulmont A, Lesueur P, Collet S, Chérel M, Bourgeois M, et al. Hypoxia imaging and adaptive radiotherapy: a state-of-the-art approach in the management of glioma. Front Med (Lausanne). 2019;6:117. https://doi.org/10.3389/fmed.2019.00117.

    Article  Google Scholar 

  56. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61. https://doi.org/10.1053/j.semnuclmed.2007.07.001.

    Article  PubMed  Google Scholar 

  57. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med. 2009;50(1):36–44. https://doi.org/10.2967/jnumed.108.055467.

    Article  PubMed  Google Scholar 

  58. Kawai N, Maeda Y, Kudomi N, Miyake K, Okada M, Yamamoto Y, et al. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging. 2011;38(3):441–50. https://doi.org/10.1007/s00259-010-1645-4.

    Article  CAS  PubMed  Google Scholar 

  59. Barajas RF, Krohn KA, Link JM, Hawkins RA, Clarke JL, Pampaloni MH, et al. Glioma FMISO PET/MR imaging concurrent with antiangiogenic therapy: molecular imaging as a clinical tool in the burgeoning era of personalized medicine. Biomedicines. 2016;4(4). https://doi.org/10.3390/biomedicines4040024.

  60. Yamaguchi S, Hirata K, Toyonaga T, Kobayashi K, Ishi Y, Motegi H, et al. Change in 18F-fluoromisonidazole PET is an early predictor of the prognosis in the patients with recurrent high-grade glioma receiving bevacizumab treatment. PLoS One. 2016;11(12):e0167917. https://doi.org/10.1371/journal.pone.0167917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33(12):2133–7.

    CAS  PubMed  Google Scholar 

  62. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70. https://doi.org/10.1007/s00259-011-2037-0.

  63. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res. 2008;14(9):2623–30. https://doi.org/10.1158/1078-0432.Ccr-07-4995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, et al. ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI. Clin Cancer Res. 2016;22(20):5079–86. https://doi.org/10.1158/1078-0432.Ccr-15-2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Toriihara A, Ohtake M, Tateishi K, Hino-Shishikura A, Yoneyama T, Kitazume Y, et al. Prognostic implications of (62)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) PET/CT in patients with glioma. Ann Nucl Med. 2018;32(4):264–71. https://doi.org/10.1007/s12149-018-1241-4.

    Article  CAS  PubMed  Google Scholar 

  66. Lopci E, Franzese C, Grimaldi M, Zucali PA, Navarria P, Simonelli M, et al. Imaging biomarkers in primary brain tumours. Eur J Nucl Med Mol Imaging. 2015;42(4):597–612. https://doi.org/10.1007/s00259-014-2971-8.

    Article  CAS  PubMed  Google Scholar 

  67. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945–52.

    CAS  PubMed  Google Scholar 

  68. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med. 2005;46(12):1948–58.

    CAS  PubMed  Google Scholar 

  69. Li Z, Yu Y, Zhang H, Xu G, Chen L. A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl Med Commun. 2015;36(7):695–701. https://doi.org/10.1097/mnm.0000000000000302.

    Article  PubMed  Google Scholar 

  70. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25(30):4714–21. https://doi.org/10.1200/jco.2006.10.5825.

    Article  CAS  PubMed  Google Scholar 

  71. Nguyen NC, Yee MK, Tuchayi AM, Kirkwood JM, Tawbi H, Mountz JM. Targeted therapy and immunotherapy response assessment with F-18 fluorothymidine positron-emission tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol. 2018;8:18. https://doi.org/10.3389/fonc.2018.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ferdová E, Ferda J, Baxa J, Tupý R, Mraček J, Topolčan O, et al. Assessment of grading in newly-diagnosed glioma using 18F-fluorothymidine PET/CT. Anticancer Res. 2015;35(2):955–9.

    PubMed  Google Scholar 

  73. Belohlavek O, Fencl P, Majovsky M, Jaruskova M, Benes V. FLT-PET in previously untreated patients with low-grade glioma can predict their overall survival. Nucl Med Rev Cent East Eur. 2014;17(1):7–12. https://doi.org/10.5603/nmr.2014.0003.

    Article  PubMed  Google Scholar 

  74. Collet S, Valable S, Constans JM, Lechapt-Zalcman E, Roussel S, Delcroix N, et al. [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. Neuroimage Clin. 2015;8:448–54. https://doi.org/10.1016/j.nicl.2015.05.012.

  75. Idema AJ, Hoffmann AL, Boogaarts HD, Troost EG, Wesseling P, Heerschap A, et al. 3'-Deoxy-3'-18F-fluorothymidine PET-derived proliferative volume predicts overall survival in high-grade glioma patients. J Nucl Med. 2012;53(12):1904–10. https://doi.org/10.2967/jnumed.112.105544.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao F, Li M, Wang Z, Fu Z, Cui Y, Chen Z, et al. (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One. 2015;10(3):e0118769. https://doi.org/10.1371/journal.pone.0118769.

  77. Zhao F, Cui Y, Li M, Fu Z, Chen Z, Kong L, et al. Prognostic value of 3'-deoxy-3'-18F-fluorothymidine ([(18)F] FLT PET) in patients with recurrent malignant gliomas. Nucl Med Biol. 2014;41(8):710–5. https://doi.org/10.1016/j.nucmedbio.2014.04.134.

    Article  CAS  PubMed  Google Scholar 

  78. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970;49(2):381–91. https://doi.org/10.1172/jci106247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lüdemann L, Warmuth C, Plotkin M, Förschler A, Gutberlet M, Wust P, et al. Brain tumor perfusion: comparison of dynamic contrast-enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol. 2009;70(3):465–74. https://doi.org/10.1016/j.ejrad.2008.02.012.

    Article  PubMed  Google Scholar 

  80. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am. 2003;13(4):717–39. https://doi.org/10.1016/s1052-5149(03)00097-2.

    Article  PubMed  Google Scholar 

  81. Yi C, Shi X, Yu D, Luo G, Zhang B, He Q, et al. The combination of 13N-ammonia and 18F-FDG PET/CT in the identification of metabolic phenotype of primary human brain tumors. Nuklearmedizin. 2019;58(3):272–8. https://doi.org/10.1055/a-0835-5746.

    Article  PubMed  Google Scholar 

  82. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22. https://doi.org/10.1038/nrn2175.

    Article  CAS  PubMed  Google Scholar 

  83. Jansen MH, Veldhuijzen van Zanten SEM, van Vuurden DG, Huisman MC, Vugts DJ, Hoekstra OS, et al. Molecular drug imaging: (89)Zr-bevacizumab PET in children with diffuse intrinsic pontine glioma. J Nucl Med. 2017;58(5):711–6. https://doi.org/10.2967/jnumed.116.180216.

  84. Veldhuijzen van Zanten SEM, Sewing ACP, van Lingen A, Hoekstra OS, Wesseling P, Meel MH, et al. Multiregional tumor drug-uptake imaging by PET and microvascular morphology in end-stage diffuse intrinsic pontine glioma. J Nucl Med. 2018;59(4):612–5. https://doi.org/10.2967/jnumed.117.197897.

  85. Chen K, Cai W, Li ZB, Wang H, Chen X. Quantitative PET imaging of VEGF receptor expression. Mol Imaging Biol. 2009;11(1):15–22. https://doi.org/10.1007/s11307-008-0172-1.

    Article  PubMed  Google Scholar 

  86. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med. 2006;47(12):2048–56.

    CAS  PubMed  Google Scholar 

  87. Heute D, Kostron H, von Guggenberg E, Ingorokva S, Gabriel M, Dobrozemsky G, et al. Response of recurrent high-grade glioma to treatment with (90)Y-DOTATOC. J Nucl Med. 2010;51(3):397–400. https://doi.org/10.2967/jnumed.109.072819.

    Article  CAS  PubMed  Google Scholar 

  88. Breeman WA, de Blois E, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41(4):314–21. https://doi.org/10.1053/j.semnuclmed.2011.02.001.

    Article  PubMed  Google Scholar 

  89. Collamati F, Pepe A, Bellini F, Bocci V, Chiodi G, Cremonesi M, et al. Toward radioguided surgery with β- decays: uptake of a somatostatin analogue, DOTATOC, in meningioma and high-grade glioma. J Nucl Med. 2015;56(1):3–8. https://doi.org/10.2967/jnumed.114.145995.

    Article  CAS  PubMed  Google Scholar 

  90. Seystahl K, Stoecklein V, Schüller U, Rushing E, Nicolas G, Schäfer N, et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro Oncol. 2016;18(11):1538–47. https://doi.org/10.1093/neuonc/now060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parghane RV, Talole S, Basu S. Prevalence of hitherto unknown brain meningioma detected on (68)Ga-DOTATATE positron-emission tomography/computed tomography in patients with metastatic neuroendocrine tumor and exploring potential of (177)Lu-DOTATATE peptide receptor radionuclide therapy as single-shot treatment approach targeting both tumors. World J Nucl Med. 2019;18(2):160–70. https://doi.org/10.4103/wjnm.WJNM_39_18.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Verburg FA, Wiessmann M, Neuloh G, Mottaghy FM, Brockmann MA. Intraindividual comparison of selective intraarterial versus systemic intravenous 68Ga-DOTATATE PET/CT in patients with inoperable meningioma. Nuklearmedizin. 2019;58(1):23–7. https://doi.org/10.1055/a-0802-5039.

    Article  PubMed  Google Scholar 

  93. Braat A, Snijders TJ, Seute T, Vonken EPA. Will (177)Lu-DOTATATE treatment become more effective in salvage meningioma patients, when boosting somatostatin receptor saturation? A promising case on intra-arterial administration. Cardiovasc Intervent Radiol. 2019;42(11):1649–52. https://doi.org/10.1007/s00270-019-02262-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Verma P, Malhotra G, Goel A, Rakshit S, Chandak A, Chedda R, et al. Differential uptake of 68Ga-PSMA-HBED-CC (PSMA-11) in low-grade versus high-grade gliomas in treatment-naive patients. Clin Nucl Med. 2019;44(5):e318–22. https://doi.org/10.1097/rlu.0000000000002520.

    Article  PubMed  Google Scholar 

  95. Sasikumar A, Joy A, Pillai MR, Nanabala R, Anees KM, Jayaprakash PG, et al. Diagnostic value of 68Ga PSMA-11 PET/CT imaging of brain tumors-preliminary analysis. Clin Nucl Med. 2017;42(1):e41–e8. https://doi.org/10.1097/rlu.0000000000001451.

    Article  PubMed  Google Scholar 

  96. Unterrainer M, Niyazi M, Ruf V, Bartenstein P, Albert NL. The endothelial prostate-specific membrane antigen is highly expressed in gliosarcoma and visualized by [68Ga]-PSMA-11 PET: a theranostic outlook for brain tumor patients? Neuro Oncol. 2017;19(12):1698–9. https://doi.org/10.1093/neuonc/nox172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salas Fragomeni RA, Menke JR, Holdhoff M, Ferrigno C, Laterra JJ, Solnes LB, et al. Prostate-specific membrane antigen-targeted imaging with [18F]DCFPyL in high-grade gliomas. Clin Nucl Med. 2017;42(10):e433–5. https://doi.org/10.1097/rlu.0000000000001769.

    Article  PubMed  Google Scholar 

  98. Matsuda M, Ishikawa E, Yamamoto T, Hatano K, Joraku A, Iizumi Y, et al. Potential use of prostate specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with (89)Zr-Df-IAB2M anti-PSMA minibody. J Neurooncol. 2018;138(3):581–9. https://doi.org/10.1007/s11060-018-2825-5.

    Article  CAS  PubMed  Google Scholar 

  99. Van de Wiele C, Sathekge M, de Spiegeleer B, de Jonghe PJ, Beels L, Maes A. PSMA-targeting positron emission agents for imaging solid tumors other than non-prostate carcinoma: a systematic review. Int J Mol Sci. 2019;20(19). https://doi.org/10.3390/ijms20194886.

  100. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59(5):795–802. https://doi.org/10.2967/jnumed.117.203539.

    Article  CAS  PubMed  Google Scholar 

  101. Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ. Response assessment in neuro-oncology clinical trials. J Clin Oncol. 2017;35(21):2439–49. https://doi.org/10.1200/jco.2017.72.7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46(1):129–38. https://doi.org/10.1007/s00259-018-4167-0.

    Article  CAS  PubMed  Google Scholar 

  103. Kneifel S, Cordier D, Good S, Ionescu MC, Ghaffari A, Hofer S, et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin Cancer Res. 2006;12(12):3843–50. https://doi.org/10.1158/1078-0432.Ccr-05-2820.

    Article  CAS  PubMed  Google Scholar 

  104. Cordier D, Forrer F, Bruchertseifer F, Morgenstern A, Apostolidis C, Good S, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging. 2010;37(7):1335–44. https://doi.org/10.1007/s00259-010-1385-5.

    Article  CAS  PubMed  Google Scholar 

  105. Schulz S, Stumm R, Röcken C, Mawrin C, Schulz S. Immunolocalization of full-length NK1 tachykinin receptors in human tumors. J Histochem Cytochem. 2006;54(9):1015–20. https://doi.org/10.1369/jhc.6A6966.2006.

    Article  CAS  PubMed  Google Scholar 

  106. Rosso M, Muñoz M, Berger M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. ScientificWorldJournal. 2012;2012:381434. https://doi.org/10.1100/2012/381434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krolicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with (213)Bi-substance P analogue. Eur J Nucl Med Mol Imaging. 2018;45(9):1636–44. https://doi.org/10.1007/s00259-018-4015-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Królicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, et al. Safety and efficacy of targeted alpha therapy with (213)Bi-DOTA-substance P in recurrent glioblastoma. Eur J Nucl Med Mol Imaging. 2019;46(3):614–22. https://doi.org/10.1007/s00259-018-4225-7.

    Article  CAS  PubMed  Google Scholar 

  109. Poli GL, Bianchi C, Virotta G, Bettini A, Moretti R, Trachsel E, et al. Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunol Res. 2013;1(2):134–43. https://doi.org/10.1158/2326-6066.Cir-13-0007.

    Article  CAS  PubMed  Google Scholar 

  110. Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol. 2005;110(5):435–42. https://doi.org/10.1007/s00401-005-1078-5.

    Article  PubMed  Google Scholar 

  111. Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodéré F, Chérel M, Pallardy A, et al. Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol. 2019;10:772. https://doi.org/10.3389/fphar.2019.00772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–7. https://doi.org/10.1182/blood-2005-08-3182.

    Article  CAS  PubMed  Google Scholar 

  113. Bian XW, Yang SX, Chen JH, Ping YF, Zhou XD, Wang QL, et al. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery. 2007;61(3):570–8; discussion 8–9. https://doi.org/10.1227/01.Neu.0000290905.53685.A2.

    Article  PubMed  Google Scholar 

  114. Sun J, Cai L, Zhang K, Zhang A, Pu P, Yang W, et al. A pilot study on EGFR-targeted molecular imaging of PET/CT With 11C-PD153035 in human gliomas. Clin Nucl Med. 2014;39(1):e20–6. https://doi.org/10.1097/RLU.0b013e3182a23b73.

    Article  PubMed  Google Scholar 

  115. Weber B, Winterdahl M, Memon A, Sorensen BS, Keiding S, Sorensen L, et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J Thorac Oncol. 2011;6(7):1287–9. https://doi.org/10.1097/JTO.0b013e318219ab87.

    Article  PubMed  Google Scholar 

  116. Tang Y, Hu Y, Liu W, Chen L, Zhao Y, Ma H, et al. A radiopharmaceutical [(89)Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nucl Med Biol. 2019;70:23–31. https://doi.org/10.1016/j.nucmedbio.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  117. Cole EL, Kim J, Donnelly DJ, Smith RA, Cohen D, Lafont V, et al. Radiosynthesis and preclinical PET evaluation of (89)Zr-nivolumab (BMS-936558) in healthy non-human primates. Bioorg Med Chem. 2017;25(20):5407–14. https://doi.org/10.1016/j.bmc.2017.07.066.

    Article  CAS  PubMed  Google Scholar 

  118. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8. https://doi.org/10.1038/s41591-018-0255-8.

    Article  CAS  PubMed  Google Scholar 

  119. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9(1):4664. https://doi.org/10.1038/s41467-018-07131-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Donnelly DJ, Smith RA, Morin P, Lipovšek D, Gokemeijer J, Cohen D, et al. Synthesis and biologic evaluation of a novel (18)F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med. 2018;59(3):529–35. https://doi.org/10.2967/jnumed.117.199596.

    Article  CAS  PubMed  Google Scholar 

  121. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. https://doi.org/10.1038/nature13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with (89)Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61(4):512–9. https://doi.org/10.2967/jnumed.119.229781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Antonios JP, Soto H, Everson RG, Moughon DL, Wang AC, Orpilla J, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114(38):10220–5. https://doi.org/10.1073/pnas.1706689114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET Imaging of T cells. Trends Cancer. 2018;4(5):359–73. https://doi.org/10.1016/j.trecan.2018.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chitneni SK, Yan H, Zalutsky MR. Synthesis and evaluation of a (18)F-labeled triazinediamine analogue for imaging mutant IDH1 expression in gliomas by PET. ACS Med Chem Lett. 2018;9(7):606–11. https://doi.org/10.1021/acsmedchemlett.7b00478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE II, et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol. 2002;20(5):1389–97. https://doi.org/10.1200/jco.2002.20.5.1389.

    Article  CAS  PubMed  Google Scholar 

  127. David M, Lécorché P, Masse M, Faucon A, Abouzid K, Gaudin N, et al. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS One. 2018;13(2):e0191052. https://doi.org/10.1371/journal.pone.0191052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Królicki L, Kunikowska J, Bruchertseifer F, Koziara H, Królicki B, Jakuciński M, et al. (225)Ac- and (213)Bi-substance P analogues for glioma therapy. Semin Nucl Med. 2020;50(2):141–51. https://doi.org/10.1053/j.semnuclmed.2019.11.004.

    Article  PubMed  Google Scholar 

  129. Królicki L, Bruchertseifer F, Kunikowska J, Koziara H, Pawlak D, Kuliński R, et al. Dose escalation study of targeted alpha therapy with [225Ac]Ac-DOTA-substance P in recurrence glioblastoma—safety and efficacy. Eur J Nucl Med Mol Imaging. 2021;48(11):3595–605. https://doi.org/10.1007/s00259-021-05350-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zalutsky MR. Current status of therapy of solid tumors: brain tumor therapy. J Nucl Med. 2005;46 Suppl 1:151s–6s.

    Google Scholar 

  131. Riva P, Franceschi G, Riva N, Casi M, Santimaria M, Adamo M. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med. 2000;27(5):601–9. https://doi.org/10.1007/s002590050549.

    Article  CAS  PubMed  Google Scholar 

  132. Akabani G, Reardon DA, Coleman RE, Wong TZ, Metzler SD, Bowsher JE, et al. Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med. 2005;46(6):1042–51.

    CAS  PubMed  Google Scholar 

  133. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49(1):30–8. https://doi.org/10.2967/jnumed.107.046938.

    Article  CAS  PubMed  Google Scholar 

  134. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer. 2002;102(1):75–85. https://doi.org/10.1002/ijc.10662.

    Article  CAS  PubMed  Google Scholar 

  135. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113(10):2265–74. https://doi.org/10.1182/blood-2008-06-160416.

    Article  CAS  PubMed  Google Scholar 

  136. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li L, Quang TS, Gracely EJ, Kim JH, Emrich JG, Yaeger TE, et al. A phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg. 2010;113(2):192–8. https://doi.org/10.3171/2010.2.Jns091211.

    Article  PubMed  Google Scholar 

  138. Casacó A, López G, García I, Rodríguez JA, Fernández R, Figueredo J, et al. Phase I single-dose study of intracavitary-administered nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther. 2008;7(3):333–9. https://doi.org/10.4161/cbt.7.3.5414.

    Article  PubMed  Google Scholar 

  139. Hdeib A, Sloan A. Targeted radioimmunotherapy: the role of 131I-chTNT-1/B mAb (Cotara) for treatment of high-grade gliomas. Future Oncol. 2012;8(6):659–69. https://doi.org/10.2217/fon.12.58.

    Article  CAS  PubMed  Google Scholar 

  140. Shapiro WR, Carpenter SP, Roberts K, Shan JS. (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin Biol Ther. 2006;6(5):539–45. https://doi.org/10.1517/14712598.6.5.539.

    Article  CAS  PubMed  Google Scholar 

  141. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, et al. Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer. 1998;76(5):620–7. https://doi.org/10.1002/(sici)1097-0215(19980529)76:5<620::aid-ijc2>3.0.co;2-s.

    Article  CAS  PubMed  Google Scholar 

  142. Schumacher T, Hofer S, Eichhorn K, Wasner M, Zimmerer S, Freitag P, et al. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med Mol Imaging. 2002;29(4):486–93. https://doi.org/10.1007/s00259-001-0717-x.

    Article  CAS  PubMed  Google Scholar 

  143. Wei X, Schlenkhoff C, Schwarz B, Essler M, Ahmadzadehfar H. Combination of 177Lu-PSMA-617 and external radiotherapy for the treatment of cerebral metastases in patients with castration-resistant metastatic prostate cancer. Clin Nucl Med. 2017;42(9):704–6. https://doi.org/10.1097/rlu.0000000000001763.

    Article  PubMed  Google Scholar 

  144. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119(3):484–92. https://doi.org/10.1002/ijc.21866.

    Article  CAS  PubMed  Google Scholar 

  145. Hellwig D, Ketter R, Romeike BF, Sell N, Schaefer A, Moringlane JR, et al. Validation of brain tumour imaging with p-[123I]iodo-L-phenylalanine and SPECT. Eur J Nucl Med Mol Imaging. 2005;32(9):1041–9. https://doi.org/10.1007/s00259-005-1807-y.

    Article  PubMed  Google Scholar 

  146. Baum RP, Kluge A, Gildehaus FJ, Bronzel M, Schmidt K, Schuchardt C, et al. Systemic endoradiotherapy with carrier-added 4-[(131)I]Iodo-L-phenylalanine: clinical proof-of-principle in refractory glioma. Nucl Med Mol Imaging. 2011;45(4):299–307. https://doi.org/10.1007/s13139-011-0116-6.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Verburg FA, Sweeney R, Hänscheid H, Dießl S, Israel I, Löhr M, et al. Patients with recurrent glioblastoma multiforme. Initial experience with p-[(131)I]iodo-L-phenylalanine and external beam radiation therapy. Nuklearmedizin. 2013;52(1):36–42. https://doi.org/10.3413/Nukmed-0510-12-06.

    Article  CAS  PubMed  Google Scholar 

  148. Puttemans J, Dekempeneer Y, Eersels JL, Hanssens H, Debie P, Keyaerts M, et al. Preclinical targeted α- and β(-)-radionuclide therapy in HER2-positive brain metastasis using camelid single-domain antibodies. Cancers (Basel). 2020;12(4). https://doi.org/10.3390/cancers12041017.

  149. Veeravagu A, Liu Z, Niu G, Chen K, Jia B, Cai W, et al. Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res. 2008;14(22):7330–9. https://doi.org/10.1158/1078-0432.Ccr-08-0797.

    Article  CAS  PubMed  Google Scholar 

  150. Jiang L, Miao Z, Kimura RH, Liu H, Cochran JR, Culter CS, et al. Preliminary evaluation of (177)Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy. Eur J Nucl Med Mol Imaging. 2011;38(4):613–22. https://doi.org/10.1007/s00259-010-1684-x.

    Article  CAS  PubMed  Google Scholar 

  151. Shi J, Fan D, Dong C, Liu H, Jia B, Zhao H, et al. Anti-tumor effect of integrin targeted (177)Lu-3PRGD2 and combined therapy with Endostar. Theranostics. 2014;4(3):256–66. https://doi.org/10.7150/thno.7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57. https://doi.org/10.1007/s00259-018-4207-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Núñez, R. (2022). Radionuclides in the Diagnosis and Therapy in Neuro-Oncology. In: Wong, F.C. (eds) Radiopharmaceuticals in the Management of Leptomeningeal Metastasis. Springer, Cham. https://doi.org/10.1007/978-3-031-14291-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14291-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14290-1

  • Online ISBN: 978-3-031-14291-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics