Skip to main content

Aggregation Equation and Collapse to Singular Measure

  • Chapter
  • First Online:
Research in PDEs and Related Fields

Abstract

We are concerned with the dynamics of onefold symmetric patches for the two-dimensional aggregation equation associated with the Newtonian potential. We reformulate a suitable graph model and prove a local well-posedness result in subcritical and critical spaces. The global existence is obtained only for small initial data using a weak damping property hidden in the velocity terms. This allows to analyze the concentration phenomenon of the aggregation patches near the blowup time. In particular, we prove that the patch collapses to a collection of disjoint segments, and we provide a description of the singular measure through a careful study of the asymptotic behavior of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Ambrosio, S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.J. Bernoff, C.M. Topaz, Nonlocal aggregation models: a primer of swarm equilibria. SIAM Rev. 55(4), 709–747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.L. Bertozzi, J. Brandman, Finite-time blow-up of L -weak solutions of an aggregation equation. Commun. Math. Sci. 8(1), 45–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.L. Bertozzi, P. Constantin, Global regularity for vortex patches. Commun. Math. Phys. 152(1), 19–28 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.L. Bertozzi, T.B. Laurent, Finite-time blow-up of solutions of an aggregation equation in \(\mathbb {R}^n\). Commun. Math. Phys. 274, 717–735 (2007)

    Google Scholar 

  6. A.L. Bertozzi, J.A. Carrillo, T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.L. Bertozzi, T. Laurent, J. Rosado, L p theory for the multidimensional aggregation equation. Commun. Pure Appl. Math. 64(1), 45–83 (2011)

    Article  MATH  Google Scholar 

  8. A.L. Bertozzi, T.B. Laurent, F. Leger, Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22(Supp. 01), 1140005 (2012)

    Google Scholar 

  9. A.L. Bertozzi, J. Garnett, T., Laurent, J. Verdera, The regularity of the boundary of a multidimensional aggregation patch. SIAM J. Math. Anal. 48(6), 3789–3819 (2016)

    Google Scholar 

  10. M. Bodnar, J.J.L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models. J. Differ. Equ. 222(2), 341–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Boi, V. Capasso, D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens. Nonlinear Anal. Real World Appl. 1(1), 163–176 (2000). Spatial heterogeneity in ecological models (Alcalá de Henares, 1998).

    Google Scholar 

  12. C.M. Breder, Equations descriptive of fish schools and other animal aggregations. Ecology 35 361–370 (1954)

    Article  Google Scholar 

  13. J.A. Carrillo, J. Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods, in European Congress of Mathematics. (European Mathematical Society, Zürich, 2010), pp. 3–16

    Google Scholar 

  14. J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4) 26(4), 517–542 (1993)

    Google Scholar 

  17. R. Coifman, A. McIntosh, Y. Meyer, Linégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes Lipschitziennes. Ann. Math. (2) 116, 361–387 (1982)

    Google Scholar 

  18. R. Danchin, Evolution d’une singularit de type cusp dans une poche de tourbillon. Revista Mat. Ibero. 16(2), 281–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.M. Delort. Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Dong, On similarity solutions to the multidimensional aggregation equation. SIAM J. Math. Anal. 43(4), 1995–2008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. Du, P. Zhang, Existence of weak solutions to some vortex density models. SIAM J. Math. Anal. 34(6), 1279–1299 (electronic), (2003).

    Google Scholar 

  22. R.C. Fetecau, Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions. Phys. D 260, 49–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.C. Fetecau, Y. Huang, T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681–2716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Gazi, K.M. Passino, Stability analysis of swarms. IEEE Trans. Automat. Control 48(4), 692–697 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Hmidi, D. Li. Dynamics of one fold symmetric patches for the aggregation equation and collapse to singular measure, to appear in Analysis and PDE. arXiv:1803.07499

    Google Scholar 

  26. D.D. Holm, V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles. Phys. D 220(2), 183–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Laurent, Local and global existence for an aggregation equation. Comm. Partial Differential Equations 32(10–12), 1941–1964 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Li, J.L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation. Adv. Math. 220(6), 1717–1738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Masmoudi, P. Zhang, Global solutions to vortex density equations arising from sup-conductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 441–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Mogilner, L. Edelstein-Keshet, A non-local model for a swarm. J. Math. Biol. 38(6), 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Morale, V. Capasso, K. Oelschläger, An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50(1), 49–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Nieto, F. Poupaud, J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Ration. Mech. Anal. 158(1), 29–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9(4), 533–561 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. C.M. Topaz, A.L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (electronic) (2004)

    Google Scholar 

  36. R. Wittman, Application of a theorem of M. G. Krein to singular integrals. Trans. Am. Math. Soc. 299(2), 581–599 (1987)

    Google Scholar 

  37. V.I. Yudovich, Non-stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3(6), 1407–1456 (1963)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoufik Hmidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hmidi, T., Li, D. (2022). Aggregation Equation and Collapse to Singular Measure. In: Ammari, K. (eds) Research in PDEs and Related Fields. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-14268-0_4

Download citation

Publish with us

Policies and ethics