Skip to main content

Metal Nanoparticles in Tuberculosis

  • Chapter
  • First Online:
Tubercular Drug Delivery Systems

Abstract

Tuberculosis (TB) is a bacterial illness that affects a number of human organs, predominantly the lungs but also the liver, spleen, and spine. It causes fever, fatigue, and a chronic cough, among other symptoms, and can be fatal if not treated effectively. Every year, ten million people contract active tuberculosis, with an estimated 1.3 million deaths. Oral administration of a combination of first-line anti-TB medicines for at least 6 months is recommended by current treatment guidelines. Patient compliance is poor due to extensive treatment times and poor pharmacokinetics, as well as side effects of drugs, which have accelerated the emergence of multidrug-resistant (MDR) organisms. All of this, together with the scarcity of novel TB drugs to treat MDR-TB and shorten typical treatment times, has underlined the need for new targeted drug delivery methods. In this regard, there has recently been a focus on nanotechnology to construct organic or/and metal, bi-metal nanoparticles loaded with TB drugs for targeted delivery via the inhaled route to improve their efficacy. This chapter identifies recent studies that have employed metal nanoparticles to provide a reliable diagnostic system and an inhaled drug delivery system to more effectively treat TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009. World Health Organization; 2009. https://apps.who.int/iris/handle/10665/44035

    Google Scholar 

  2. World Health Organization. Global tuberculosis report 2018. World Health Organization; 2018. https://apps.who.int/iris/handle/10665/274453

    Google Scholar 

  3. Vieira AC, Magalhães J, Rocha S, Cardoso MS, Santos SG, Borges M, Pinheiro M, Reis S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12(24):2721–36.

    CAS  PubMed  Google Scholar 

  4. Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics–a review. Biosens Bioelectron. 2018;115:14–29.

    CAS  PubMed  Google Scholar 

  5. Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv. 2013;31(4):438–49.

    PubMed  PubMed Central  Google Scholar 

  6. Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron. 2018;113:124–35.

    CAS  PubMed  Google Scholar 

  7. Zhou L, He X, He D, Wang K, Qin D. Biosensing technologies for mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol. 2011;2011:193963.

    PubMed  PubMed Central  Google Scholar 

  8. Martinkova P, Kostelnik A, Válek T, Pohanka M. Main streams in the construction of biosensors and their applications. Int J Electrochem Sci. 2017;12(8):7386–403.

    CAS  Google Scholar 

  9. Oni T, Youngblood E, Boulle A, McGrath N, Wilkinson RJ, Levitt NS. Patterns of HIV, TB, and non-communicable disease multi-morbidity in peri-urban South Africa-a cross sectional study. BMC Infect Dis. 2015;15(1):1–8.

    Google Scholar 

  10. Golub JE, Cohn S, Saraceni V, Cavalcante SC, Pacheco AG, Moulton LH, et al. Long-term protection from isoniazid preventive therapy for tuberculosis in HIVinfected patients in a medium-burden tuberculosis setting: the TB/HIV in Rio (THRio) study. Clin Infect Dis. 2015;60(4):639–45.

    CAS  PubMed  Google Scholar 

  11. Kim JH, Nam WS, Kim SJ, Kwon OK, Seung EJ, Jo JJ, Shresha R, Lee TH, Jeon TW, Ki SH, Lee HS. Mechanism investigation of rifampicin-induced liver injury using comparative toxicoproteomics in mice. Int J Mol Sci. 2017;18(7):1417.

    PubMed  PubMed Central  Google Scholar 

  12. Ramappa V, Aithal GP. Hepatotoxicity related to antituberculosis drugs: mechanisms and management. J Clin Exp Hepatol. 2013;3(1):37–49.

    PubMed  Google Scholar 

  13. Jafari AR, Mosavi T, Mosavari N, Majid A, Movahedzade F, Tebyaniyan M, et al. Mixed metal oxide nanoparticles inhibit growth of mycobacterium tuberculosis into THP-1 cells. Int J Mycobacteriol. 2016;5(Suppl 1):S181–3.

    PubMed  Google Scholar 

  14. Pati R, Sahu R, Panda J, Sonawane A. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. Sci Rep. 2016;6:24184.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalluru R, Fenaroli F, Westmoreland D, Ulanova L, Maleki A, Roos N, et al. Polylactide-co-glycolide-rifampicinnanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago- lysosomes. J Cell Sci. 2013;126(14):3043–54.

    CAS  PubMed  Google Scholar 

  16. Jafari A, Mosavari N, Movahedzadeh F, Nodooshan SJ, Safarkar R, Moro R, et al. Bactericidal impact of ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb Pathog. 2017;110:335–44.

    CAS  PubMed  Google Scholar 

  17. Jafari A, Jafari Nodooshan S, Safarkar R, Movahedzadeh F, Mosavari N, Novin Kashani A, et al. Toxicity effects of AgZnO nanoparticles and rifampicin on mycobacterium tuberculosis into the macrophage. J Basic Microbiol. 2018;58(1):41–51.

    CAS  PubMed  Google Scholar 

  18. Bhatt K, Salgame P. Host innate immune response to mycobacterium tuberculosis. J Clin Immunol. 2007;27(4):347–62.

    CAS  PubMed  Google Scholar 

  19. Vergne I, Chua J, Singh SB, Deretic V. Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004;20:367–94.

    CAS  PubMed  Google Scholar 

  20. Mueller P, Pieters J. Modulation of macrophage antimicrobial mechanisms by pathogenic mycobacteria. Immunobiology. 2006;211(6–8):549–56.

    CAS  PubMed  Google Scholar 

  21. Sherman S, Rohwedder JJ, Ravikrishnan KP, Weg JG. Tuberculous enteritis and peritonitis. Report of 36 general hospital cases. Arch Intern Med. 1980;140(4):506–8.

    CAS  PubMed  Google Scholar 

  22. Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27:393–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Horvath CN, Shaler CR, Jeyanathan M, Zganiacz A, Xing Z. Mechanisms of delayed anti-tuberculosis protection in the lung of parenteral BCG-vaccinated hosts: a critical role of airway luminal T cells. Mucosal Immunol. 2012;5(4):420–31.

    CAS  PubMed  Google Scholar 

  24. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2005;102(11):4033–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, et al. Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263(5147):678–81.

    CAS  PubMed  Google Scholar 

  26. Miller BH, Fratti RA, Poschet JF, Timmins GS, Master SS, Burgos M, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun. 2004;72(5):2872–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell. 2004;15(2):751–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KV. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep. 2016;6:23089.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med. 2003;198(9):1361–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stamm LM, Pak MA, Morisaki JH, Snapper SB, Rottner K, Lommel S, et al. Role of the WASP family proteins for Mycobacterium marinum actin tail formation. Proc Natl Acad Sci U S A. 2005;102(41):14837–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S, et al. The ESAT-6 protein of mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog. 2014;10(10):e1004446.

    PubMed  PubMed Central  Google Scholar 

  32. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, et al. M. Tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell. 2007;129(7):1287–98.

    PubMed  Google Scholar 

  33. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol. 2008;190(16):5672–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Chastellier C. The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology. 2009;214(7):526–42.

    PubMed  Google Scholar 

  35. Sibley DL, Charron AJ, Hakansson S, Mordue DG. Invasion and intracellular survival by toxoplasma. Immunol Rev. 2013;240(1):72–91.

    Google Scholar 

  36. Yavvari PS, Gupta S, Arora D, Nandicoori VK, Srivastava A, Bajaj A. Clathrin-independent killing of intracellular mycobacteria and biofilm disruptions using synthetic antimicrobial polymers. Biomacromolecules. 2017;18(7):2024–33.

    CAS  PubMed  Google Scholar 

  37. Ríos-Barrera VA, Campos-Peña V, Aguilar-León D, Lascurain LR, Meraz-Ríos MA, Moreno J, et al. Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: their relationship to mycobacterial virulence. Eur J Immunol. 2006;36(2):345–53.

    PubMed  Google Scholar 

  38. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17(1):593–623.

    CAS  PubMed  Google Scholar 

  39. Hamilton RF, Buckingham S, Holian A. The effect of size on ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Int J Mol Sci. 2014;15(4):6815–30.

    PubMed  PubMed Central  Google Scholar 

  40. Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native LDLparticles. Curr Opin Lipidol. 2011;22(5):386–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jafari A, Nagheli A, Foumani AA, Soltani B, Goswami R. The role of metallic nanoparticles in inhibition of mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med J. 2020;35(6):e194.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.

    PubMed  PubMed Central  Google Scholar 

  43. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12(2):1657–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    CAS  PubMed  Google Scholar 

  45. Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R. Gold-nanoparticle-probe-based assay for rapid and direct detection of mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006;52(7):1433–4.

    CAS  PubMed  Google Scholar 

  46. Silva LB, Veigas B, Doria G, Costa P, Inácio J, Martins R, et al. Portable optoelectronic biosensing platform for identification of mycobacteria from the mycobacterium tuberculosis complex. Biosens Bioelectron. 2011;26:2012–7.

    CAS  PubMed  Google Scholar 

  47. Kaewphinit T, Santiwatanakul S, Chansiri K. Colorimetric DNA based biosensor combined with loopmediated isothermal amplification for detection of mycobacterium tuberculosis by using gold nanoprobe aggregation. Sens Transducer. 2013;149(2):123–8.

    CAS  Google Scholar 

  48. Bernacka-Wojcik I, Lopes P, Vaz AC, Veigas B, Wojcik PJ, Simões P, et al. Bio-microfluidic platform for gold nanoprobe based DNA detection—application to mycobacterium tuberculosis. Biosens Bioelectron. 2013;48:87–93.

    CAS  PubMed  Google Scholar 

  49. Veigas B, Pedrosa P, Carlos FF, Mancio-Silva L, Grosso AR, Fortunato E, et al. One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. J Nanobiotechnol. 2015;13:48.

    Google Scholar 

  50. Tsai T-T, Huang C-Y, Chen C-A, Shen S-W, Wang M-C, Cheng C-M, et al. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sens. 2017;2:1345–54.

    CAS  PubMed  Google Scholar 

  51. Xiang Y, Zhu X, Huang Q, Zheng J, Fu W. Realtime monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens Bioelectron. 2015;66:512–9.

    CAS  PubMed  Google Scholar 

  52. Matsishin M, Rachkov A, Lopatynskyi A, Chegel V, Soldatkin A, El’skaya A. Selective amplification of SPR biosensor signal for recognition of rpoB gene fragments by use of gold nanoparticles modified by thiolated DNA. Nanoscale Res Lett. 2017;12:252.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaewphinit T, Santiwatanakul S, Chansiri K. Gold nanoparticle amplification combined with quartz crystal microbalance DNA based biosensor for detection of mycobacterium tuberculosis. Sens Transducer J. 2012;146(11):156–63.

    CAS  Google Scholar 

  54. Zhang J, Huang J, He F. The construction of mycobacterium tuberculosis 16S rDNA MSPQC sensor based on exonuclease III-assisted cyclic signal amplification. Biosens Bioelectron. 2019;138:111322.

    CAS  PubMed  Google Scholar 

  55. Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26:4614–8.

    CAS  PubMed  Google Scholar 

  56. Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M. Specific detection of mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem. 2011;417:73–9.

    CAS  PubMed  Google Scholar 

  57. Karaballi RA, Nel A, Krishnan S, Blackburn J, Brosseau CL. Development of an electrochemical surface enhanced Raman spectroscopy (EC-SERS) aptasensor for direct detection of DNA hybridization. Phys Chem Chem Phys. 2015;17:21356–63.

    CAS  PubMed  Google Scholar 

  58. Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB and HPV oligonucleotide. Anal Chem. 2017;89(10):5428–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasanzadeh M, Shadjou N, de la Guardia M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal Chem. 2015;72:1–9.

    CAS  Google Scholar 

  60. Prabhakar N, Solanki PR, Kaushik A, Pandey MK, Malhotra BD. Peptide nucleic acid immobilized biocompatible silane nanocomposite platform for mycobacterium tuberculosis detection. Electroanalysis. 2010;22(22):2672–82.

    CAS  Google Scholar 

  61. Costa MP, Andrade CAS, Montenegro RA, Melo FL, Oliveira MDL. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Coll Interf Sci. 2014;433:141–8.

    CAS  Google Scholar 

  62. Haddaoui M, Sola C, Raouafi N, Korri-Youssoufi H. E-DNA detection of rpoB gene resistance in mycobacterium tuberculosis in real samples using Fe3O4/polypyrrole nanocomposite. Biosens Bioelectron. 2019;128:76–82.

    CAS  PubMed  Google Scholar 

  63. Bellezza F, Cipiciani A, Quotadamo MA. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles. Langmuir. 2005;21(24):11099–104.

    CAS  PubMed  Google Scholar 

  64. Das M, Sumana G, Nagarajan R, Malhotra BD. Zirconia based nucleic acid sensor for mycobacterium tuberculosis detection. Appl Phys Lett. 2010;96:133703.

    Google Scholar 

  65. Das M, Dhand C, Sumana G, Srivastava AK, Nagarajan R, Nain L, et al. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules. 2011;12:540–7.

    CAS  PubMed  Google Scholar 

  66. Gazouli M, Liandris E, Andreadou M, Sechi LA, Masala S, Paccagnini D, et al. Specific detection of unamplified mycobacterial DNA by use of fluorescent semiconductor quantum dots and magnetic beads. J Clin Microbiol. 2010;48(8):2830–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shojaei TR, Salleh MAM, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al. Development of sandwich-form biosensor to detect mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis. 2014;18(6):600–8.

    PubMed  PubMed Central  Google Scholar 

  68. Zhang C, Lou J, Tu W, Bao J, Dai Z. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. Analyst. 2015;140:506–11.

    CAS  PubMed  Google Scholar 

  69. Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett. 2019;14(1):1–16.

    CAS  Google Scholar 

  70. Chen D, Qiao X, Qiu X, Chen J. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci. 2009;44(4):1076–81.

    CAS  Google Scholar 

  71. Syafiuddin A, Salmiati S, Hadibarata T, Kueh AB, Salim MR, Zaini MA. Silver nanoparticles in the water environment in Malaysia: inspection, characterization, removal, modeling, and future perspective. Sci Rep. 2018;8:986.

    PubMed  PubMed Central  Google Scholar 

  72. Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–99.

    PubMed  Google Scholar 

  73. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.

    Google Scholar 

  74. Dasgupta N, Ranjan S, Mishra D, Ramalingam C. Thermal co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem Biol Interact. 2018;295:109–18.

    CAS  PubMed  Google Scholar 

  75. Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–59.

    Google Scholar 

  76. Zhong X, Song Y, Yang P, Wang Y, Jiang S, Zhang X, Li C. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly. PLoS One. 2016;11(1):e0146957.

    PubMed  PubMed Central  Google Scholar 

  77. Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Spectrochim Acta A Mol Biomol Spectrosc. 2015;144:266–72.

    CAS  PubMed  Google Scholar 

  78. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1062562.

    PubMed  PubMed Central  Google Scholar 

  79. Gupta M, Mahajan VK, Mehta KS, Chauhan PS. Zinc therapy in dermatology: a review. Dermatol Res Pract. 2014;2014:709152.

    PubMed  PubMed Central  Google Scholar 

  80. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S. Antibacterial activity of silver and zinc nanoparticles against vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. 2015;305(1):85–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simões MF, Ottoni CA, Antunes A. Mycogenic metal nanoparticles for the treatment of mycobacterioses. Antibiotics. 2020;9(9):569.

    PubMed  PubMed Central  Google Scholar 

  82. Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An inhalable theranostic system for local tuberculosis treatment containing an isoniazid loaded metal organic framework Fe-MIL-101-NH2—from raw MOF to drug delivery system. Pharmaceutics. 2019;11(12):687.

    PubMed  PubMed Central  Google Scholar 

  83. Heidary M, Bostanabad SZ, Amini SM, Jafari A, Nobar MG, Ghodousi A, Kamalzadeh M, Darban-Sarokhalil D. The anti-mycobacterial activity of ag, ZnO, and ag-ZnO nanoparticles against MDR-and XDR-mycobacterium tuberculosis. Infect Drug Res. 2019;12:3425–35.

    CAS  Google Scholar 

  84. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.

    CAS  PubMed  Google Scholar 

  85. Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8(1):374–86.

    CAS  PubMed  Google Scholar 

  86. Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One. 2013;8(5):e64060.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–53.

    CAS  PubMed  Google Scholar 

  88. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012;8(3):328–36.

    PubMed  Google Scholar 

  89. Choi SR, Britigan BE, Narayanasamy P. Ga (III) nanoparticles inhibit growth of both mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob Agents Chemother. 2017;61(4):e02505–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Choi SR, Britigan BE, Narayanasamy P. Treatment of virulent mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production. Msphere. 2019;4(4):e00443–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):e0177987.

    PubMed  PubMed Central  Google Scholar 

  92. Wyszogrodzka G, Dorożyński P, Gil B, Roth WJ, Strzempek M, Marszałek B, Węglarz WP, Menaszek E, Strzempek W, Kulinowski P. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy. Pharm Res. 2018;35:144.

    PubMed  PubMed Central  Google Scholar 

  93. Jafari A. Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance mycobacterium tuberculosis. Ind J Tuberc. 2021;68(2):195–200.

    Google Scholar 

  94. Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol. 2016;205(6):603–13.

    PubMed  PubMed Central  Google Scholar 

  95. Kalmantaeva OV, Firstova VV, Grishchenko NS, Rudnitskaya TI, Potapov VD, Ignatov SG. Antibacterial and immunomodulating activity of silver nanoparticles on mice experimental tuberculosis model. Appl Biochem Microbiol. 2020;56(2):226–32.

    CAS  Google Scholar 

  96. Abdel-Aziz MM, Elella MH, Mohamed RR. Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol. 2020;142:244–53.

    CAS  PubMed  Google Scholar 

  97. Sun F, Oh S, Kim J, Kato T, Kim HJ, Lee J, Park EY. Enhanced internalization of macromolecular drugs into mycobacterium smegmatis with the assistance of silver nanoparticles. J Microbiol Biotechnol. 2017;27(8):1483–90.

    CAS  PubMed  Google Scholar 

  98. Selim A, Elhaig MM, Taha SA, Nasr EA. Antibacterial activity of silver nanoparticles against field and reference strains of mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Rev Off Int Epizoot. 2018;37:823–30.

    CAS  Google Scholar 

  99. Praphakar RA, Jeyaraj M, Ahmed M, Kumar SS, Rajan M. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int J Biol Macromol. 2018;118:1627–38.

    Google Scholar 

  100. Lim YH, Tiemann KM, Heo GS, Wagers PO, Rezenom YH, Zhang S, Zhang F, Youngs WJ, Hunstad DA, Wooley KL. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly (L-lactide). ACS Nano. 2015;9(2):1995–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sivaraj A, Kumar V, Sunder R, Parthasarathy K, Kasivelu G. Commercial yeast extracts mediated green synthesis of silver chloride nanoparticles and their anti-mycobacterial activity. J Clust Sci. 2020;31(1):287–91.

    CAS  Google Scholar 

  102. Sarkar S, Leo BF, Carranza C, Chen S, Rivas-Santiago C, Porter AE, Ryan MP, Gow A, Chung KF, Tetley TD, Zhang J. Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification. PLoS One. 2015;10(11):e0143077.

    PubMed  PubMed Central  Google Scholar 

  103. Sarkar S, Carranza C, Theodorou I, Fen LB, Ellis T, Porter A, Ryan M, Zhang J, Tetley T, Schwander S. Impact of silver and carbon nanoparticle exposures on macrophage responses to mycobacterium tuberculosis (M. tb). J. Immunol. 2016;196(1 Supplement):200.21.

    Google Scholar 

  104. Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016;11:1889–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA. Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents. 2015;46(2):183–8.

    CAS  PubMed  Google Scholar 

  106. Punjabi K, Mehta S, Chavan R, Chitalia V, Deogharkar D, Deshpande S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front Microbiol. 2018;9:2207.

    PubMed  PubMed Central  Google Scholar 

  107. Jafari AR, Mosavi T, Mosavari N, Majid A, Movahedzade F, Tebyaniyan M, Kamalzadeh M, Dehgan M, Jafari S, Arastoo S. Mixed metal oxide nanoparticles inhibit growth of mycobacterium tuberculosis into THP-1 cells. Int J Mycobacteriol. 2016;5:S181–3.

    PubMed  Google Scholar 

  108. Jafari A, Mosavari N, Movahedzadeh F, Nodooshan SJ, Safarkar R, Moro R, Kamalzadeh M, Majidpour A, Boustanshenas M, Mosavi T. Bactericidal impact of ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb Pathog. 2017;110:335–44.

    CAS  PubMed  Google Scholar 

  109. Ellis T, Chiappi M, García-Trenco A, Al-Ejji M, Sarkar S, Georgiou TK, Shaffer MS, Tetley TD, Schwander S, Ryan MP, Porter AE. Multimetallic microparticles increase the potency of rifampicin against intracellular mycobacterium tuberculosis. ACS Nano. 2018;12(6):5228–40.

    CAS  PubMed  Google Scholar 

  110. Ramalingam V, Sundaramahalingam S, Rajaram R. Size-dependent antimycobacterial activity of titanium oxide nanoparticles against mycobacterium tuberculosis. J Mater Chem B. 2019;7(27):4338–46.

    CAS  Google Scholar 

  111. Patil BN, Taranath TC. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against mycobacterium tuberculosis. Int J Mycobacteriol. 2016;5(2):197–204.

    PubMed  Google Scholar 

  112. Mahendra C, Chandra MN, Murali M, Abhilash MR, Singh SB, Satish S, Sudarshana MS. Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity. Process Biochem. 2020;89:220–6.

    CAS  Google Scholar 

  113. Vijayakumar S, Nilavukkarasi M, Sakthivel B. Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: scientifically unexplored. Gene Rep. 2020;20:100764.

    CAS  Google Scholar 

  114. Mistry N, Bandyopadhyaya R, Mehra S. Zno nanoparticles and rifampicin synergistically damage the membrane of mycobacteria. ACS Appl Nano Mater. 2020;3(4):3174–84.

    CAS  Google Scholar 

  115. Manuja A, Kumar B, Kumar R, Chhabra D, Ghosh M, Manuja M, Brar B, Pal Y, Tripathi BN, Prasad M. Metal/metal oxide nanoparticles: toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021;8:1970–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamaruz Zaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guha, N., Zaman, M.K. (2023). Metal Nanoparticles in Tuberculosis. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_3

Download citation

Publish with us

Policies and ethics