Skip to main content

On Strong Solution to the 2D Stochastic Ericksen–Leslie System: A Ginzburg–Landau Approximation Approach

  • Conference paper
  • First Online:
Quantum and Stochastic Mathematical Physics

Abstract

In this manuscript, we consider a highly nonlinear and constrained stochastic PDEs modelling the dynamics of 2-dimensional nematic liquid crystals under random perturbation. This system of SPDEs is also known as the stochastic Ericksen–Leslie equations (SELEs). We discuss the existence of local strong solution to the stochastic Ericksen–Leslie equations. In particular, we study the convergence of the stochastic Ginzburg–Landau approximation of SELEs, and prove that the SELEs with initial data in \(\textsf{H}^1\times \textsf{H}^2\) has at least a martingale, local solution which is strong in PDEs sense.

Part of this article was written when P. Razafimandimby was a Marie Skłodowska-Curie fellow at the University of York. This article is part of a project that received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 791735 “SELEs”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the sense that for all \(n\in \mathbb {N}\), \(\tau _n \le \tau _{n+1}\), \(\mathbb {P}\)-a.s.

References

  1. F. Alouges, A. de Bouard, A. Hocquet, A semi-discrete scheme for the stochastic Landau–Lifshitz equation. Stoch. Partial Differ. Equ. Anal. Comput. 2, 281–315 (2014)

    MathSciNet  MATH  Google Scholar 

  2. H. Bessaih, Z. Brzeźniak, A. Millet, Splitting up method for the 2D stochastic Navier–Stokes equations. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 433–470 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Z. Brzeźniak, G. Dhariwal, Stochastic constrained Navier–Stokes equations on \(\mathbb{T}^2\). J. Differ. Equ. 285, 128–174 (2021)

    Google Scholar 

  4. Z. Brzeźniak, E. Hausenblas, P. Razafimandimby, Strong solution to stochastic penalised nematic liquid crystals model driven by multiplicative Gaussian noise. Indiana Univ. Math. J. 70(5), 2177–2235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Brzeźniak, E. Hausenblas, P.A. Razafimandimby, A note on the stochastic Ericksen–Leslie equations for nematic liquid crystals. Discrete Contin. Dyn. Syst. Ser. B 24(11), 5785–5802 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Z. Brzeźniak, E. Hausenblas, P.A. Razafimandimby, Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle. Stoch. Partial Differ. Equ. Anal. Comput. 7(3), 417–475 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Z. Brzeźniak, E. Hausenblas, P.A. Razafimandimby, Stochastic nonparabolic dissipative systems modeling the flow of liquid crystals: strong solution, in RIMS Symposium on Mathematical Analysis of Incompressible Flow, February 2013. RIMS Kôkyûroku, vol. 1875 (2014), pp. 41–73

    Google Scholar 

  8. Z. Brzeźniak, B. Maslowski, J. Seidler, Stochastic nonlinear beam equations. Probab. Theory Relat. Fields 132, 119–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Brzeźniak, E. Motyl, Existence of a martingale solution of stochastic Navier–Stokes equation in unbounded 2D and 3D domains. J. Differ. Equ. 254, 1627–1685 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Brzeźniak, S. Peszat, Stochastic two dimensional Euler equations. Ann. Probab. 29, 1796–1832 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Chen, S. Kim, Y. Yu, Freedericksz transition in nematic liquid crystal flows in dimension two. SIAM J. Math. Anal. 50(5), 4838–4860 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Climent-Ezquerra, F. Guillén-González, A review of mathematical analysis of nematic and smectic—a liquid crystal models. Eur. J. Appl. Math. 25(1), 133–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford)

    Google Scholar 

  14. K.D. Elworthy, Stochastic Differential Equations on Manifolds. London Mathematical Society LNS, vol. 70 (Cambridge University Press, 1982)

    Google Scholar 

  15. J.L. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  16. Z. Feng, M.-C. Hong, Y. Mei, Convergence of the Ginzburg–Landau approximation for the Ericksen–Leslie system. SIAM J. Math. Anal. 52, 481–523 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hieber, J.W. Prüss, Modeling and analysis of the Ericksen–Leslie equations for nematic liquid crystal flows, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, ed. by Y. Giga, A. Novotny (Springer, Berlin, 2018), pp. 1075–1134

    Google Scholar 

  18. A. Hocquet, Struwe-like solutions of the stochastic harmonic map flow. J. Evol. Equ. 18(3), 1189–1228 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.-C. Hong, Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40, 15–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.-C. Hong, Z. Xin, Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in \(\mathbb{R}^2\). Adv. Math. 231(3–4), 1364–1400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.-C. Hong, J. Li, Z. Xin, Blow-up criteria of strong solutions to the Ericksen–Leslie system in \(\mathbb{R}^3\). Commun. Partial Differ. Equ. 39(7), 1284–1328 (2014)

    Article  MATH  Google Scholar 

  22. M.-C. Hong, Y. Mei, Well-posedness of the Ericksen–Leslie system with the Oseen–Frank energy in \(L^3_{\text{uloc}}(\mathbb{R}^3)\). Calc. Var. Partial Differ. Equ. 58(1), Art. 3, 38 (2019)

    Google Scholar 

  23. J. Huang, F. Lin, C. Wang, Regularity and existence of global solutions to the Ericksen–Leslie system in \(\mathbb{R}^2\). Commun. Math. Phys. 331(2), 805–850 (2014)

    Google Scholar 

  24. T. Huang, F. Lin, C. Liu, C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three. Arch. Ration. Mech. Anal. 221(3), 1223–1254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997); translation in Theory Probab. Appl. 42(1), 167–174 (1998)

    Google Scholar 

  26. I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113 (Springer Verlag, Berlin Heidelberg New York, 1996)

    Google Scholar 

  27. H. Kunita, Stochastic Flows and Stochastic Differential Equations (Cambridge University Press, 1990)

    Google Scholar 

  28. F.M. Leslie, Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Li, E.S. Titi, Z. Xin, On the uniqueness of weak solutions to the Ericksen–Leslie liquid crystal model in \(\mathbb{R}^2\). Math. Models Methods Appl. Sci. 26(4), 803–822 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69(8), 1532–1571 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. F.H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995)

    Google Scholar 

  33. F.-H. Lin, C. Liu, Existence of solutions for the Ericksen–Leslie System. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Lin, C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20130361, 18 pp. (2014)

    Google Scholar 

  35. F. Lin, C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. Ser. B 31B(6), 921–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Tachim Medjo, On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Commun. Pure Appl. Anal. 18(5), 2243–2264 (2019)

    Google Scholar 

  37. M. Métivier, Semimartingales: A Course on Stochastic Processes, vol. 2 of de Gruyter Studies in Mathematics (1982)

    Google Scholar 

  38. E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127–167 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (CRC Press, Boca Raton, FL, 2004)

    Google Scholar 

  40. M. Struwe, On the evolution of harmonic maps of Riemannian surfaces. Commun. Math. Helv. 60, 558–581 (1985)

    Article  MATH  Google Scholar 

  41. R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. (SIAM, Philadelphia, PA, 1995)

    Book  MATH  Google Scholar 

  42. M.J. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydromechanics (Kluwer Academic Publishers, Dordrecht, 1988)

    Google Scholar 

  43. N.J. Walkington, Numerical approximation of nematic liquid crystal flows governed by the Ericksen–Leslie equations. ESAIM Math. Model. Numer. Anal. 45, 523–540 (2011)

    Google Scholar 

  44. M. Wang, W. Wang, Global existence of weak solution for the 2-D Ericksen–Leslie system. Calc. Var. Partial Differ. Equ. 51(3–4), 915–962 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 210(3), 837–855 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Wang, W. Wang, Z. Zhang, On the uniqueness of weak solution for the 2-D Ericksen–Leslie system. Discrete Contin. Dyn. Syst. Ser. B 21(3), 919–941 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. W. Wang, P. Zhang, Z. Zhang, The small Deborah number limit of the Doi–Onsager equation to the Ericksen–Leslie equation. Commun. Pure Appl. Math. 68(8), 1326–1398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first named author would like to dedicate this work to Professor Sergio Albeverio, his teacher, a collaborator and a friend, on his 80th Birthday. Their collaboration on mathematical foundations of Feynmann path integrals has led him to understand the stochastic integral with respect to a cylindrical Wiener process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Brzeźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzeźniak, Z., Deugoué, G., Razafimandimby, P.A. (2023). On Strong Solution to the 2D Stochastic Ericksen–Leslie System: A Ginzburg–Landau Approximation Approach. In: Hilbert, A., Mastrogiacomo, E., Mazzucchi, S., Rüdiger, B., Ugolini, S. (eds) Quantum and Stochastic Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-031-14031-0_12

Download citation

Publish with us

Policies and ethics