Skip to main content

An EEG-EMG-Based Motor Intention Recognition for Walking Assistive Exoskeletons

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13455))

Included in the following conference series:

Abstract

Lower Limb Exoskeleton (LLE) has received considerable interests in strength augmentation, rehabilitation and walking assistance scenarios. For walking assistance, the LLE is expected to have the capability of recognizing the motor intention accurately. However, the methods for recognizing motor intention base on ElectroEncephaloGraphy (EEG) can not be directly used for recognizing the motor intention of human lower limbs, because it is difficult to distinguish left and right limbs. This paper proposes a human-exoskeleton interaction method based on EEG and ElectroMyoGrams (EMG)-Hierarchical Recognition for Motor Intention (HRMI). In which, the motor intention can be recognized by the EEG signal, and supplemented by EMG signals reflecting motor intention, the exoskeleton can distinguish the left and right limbs. An experimental platform is established to explore the performance of the proposed method in real life scenario. Ten healthy participants were recruited to perform a series of motions such standing, sitting, walking, and going up and down stairs. The results shown that the proposed method is successfully applied in real life scenarios and the recognition accuracy of standing and sitting than others.

This work was supported by the National Key Research and Development Program of China (No. 2018AAA0102504), the National Natural Science Foundation of China (NSFC) (No. 62003073, 62103084), and the Sichuan Science and Technology Program (No. 2021YFG0184, No. 2020YFSY0012, No. 2018GZDZX0037).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosini, E., et al.: A robotic system with EMG-triggered functional electrical stimulation for restoring arm functions in stroke survivors. Neurorehabil. Neural Repair 35(4), 334–345 (2021)

    Google Scholar 

  2. Chen, Q., Cheng, H., Huang, R., Qiu, J., Chen, X.: Learning and planning of stair ascent for lower-limb exoskeleton systems. Ind. Robot: Int. J. Robot. Res. Appl. 46(3), 421–430 (2019)

    Article  Google Scholar 

  3. Kazerooni, H., Chu, A., Steger, R.: That which does not stabilize, will only make us stronger. Int. J. Robot. Res. 26(1), 75–89 (2007)

    Article  Google Scholar 

  4. Lee, S.W., Wilson, K.M., Lock, B.A., Kamper, D.G.: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 558–566 (2010)

    Article  Google Scholar 

  5. Li, D., Zhang, Y.: Artificial neural network prediction of angle based on surface electromyography. In: 2011 International Conference on Control, Automation and Systems Engineering (CASE), pp. 1–3. IEEE (2011)

    Google Scholar 

  6. Li, H., et al.: EEG changes in time and time-frequency domain during movement preparation and execution in stroke patients. Front. Neurosci. 14, 827 (2020)

    Google Scholar 

  7. Merletti, R., Di Torino, P.: Standards for reporting EMG data. J. Electromyogr. Kinesiol. 9(1), 3–4 (1999)

    Google Scholar 

  8. Miao, M., Hu, W., Yin, H., Zhang, K.: Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network. Comput. Math. Meth. Med. 2020 (2020)

    Google Scholar 

  9. Obayashi, S., Takahashi, R., Onuki, M.: Upper limb recovery in early acute phase stroke survivors by coupled EMG-triggered and cyclic neuromuscular electrical stimulation. NeuroRehabilitation 46(3), 417–422 (2020)

    Article  Google Scholar 

  10. Penfield, W., Boldrey, E.: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4), 389–443 (1937)

    Article  Google Scholar 

  11. Poboroniuc, M.S., Irimia, D.C.: FES & BCI based rehabilitation engineered equipment: clinical tests and perspectives. In: E-Health and Bioengineering Conference (EHB), pp. 77–80 (2017)

    Google Scholar 

  12. Radman, M., Chaibakhsh, A., Nariman-zadeh, N., He, H.: Generalized sequential forward selection method for channel selection in EEG signals for classification of left or right hand movement in BCI. In: International Conference on Computer and Knowledge Engineering (ICCKE), pp. 137–142 (2019)

    Google Scholar 

  13. Shi, D., Zhang, W., Zhang, W., Ding, X.: A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 32(1), 1–11 (2019)

    Article  Google Scholar 

  14. Uusitalo, M.A., Ilmoniemi, R.J.: Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Compu. 35(2), 135–140 (1997)

    Article  Google Scholar 

  15. Wang, J., Dai, Y., Kang, T., Si, X.: Research on human motion recognition based on lower limb electromyography (EMG) signals. In: IEEE International Conference on Electronics Technology (ICET), pp. 1234–1239 (2021)

    Google Scholar 

  16. Zhang, X., Tang, X., Wei, Z., Chen, X., Chen, X.: Model-based sensitivity analysis of EMG clustering index with respect to motor unit properties: investigating post-stroke FDI muscle. IEEE Trans. Neural Syst. Rehabil. Eng. 28(8), 1836–1845 (2020)

    Article  Google Scholar 

  17. Zhang, X., Zhou, P.: High-density myoelectric pattern recognition toward improved stroke rehabilitation. IEEE Trans. Biomed. Eng. 59(6), 1649–1657 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, G., Huang, R., Guo, Y., Qiu, J., Cheng, H. (2022). An EEG-EMG-Based Motor Intention Recognition for Walking Assistive Exoskeletons. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics