Skip to main content

Optimal Control Method of Motor Torque Loading Based on Genetic Algorithm

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

This paper designs an automatic calibration method and system of motor torque for the problem of low loading accuracy of motor torque. The system uses genetic algorithm to optimize PID parameters and load control and measurement of the motor. The genetic algorithm is realized in the simulation platform, and the iterative operation is carried out by setting different cross probability and mutation probability parameters. The results are substituted into the motor model to analyze the response speed and anti-interference ability of the motor to the given random signal, and the optimal PID parameters are obtained as the configuration parameters of the motor torque automatic calibration system. The experimental results show that compared with the traditional motor torque calibration loading control, the accuracy of the system torque calibration error is improved and the error range is controlled within ±0.003 N \(\cdot \) m, which verifies the effectiveness and feasibility of this method.

This work was supported by the National Key R &D Program of China under Grant No. 2018AAA0101000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Z., Li, J., Wang, J., Wang, S., Zhao, J., Li, J.: Towards hybrid gait obstacle avoidance for a six wheel-legged robot with payload transportation. J. Intell. Robot. Syst. 102(3), 1–21 (2021)

    Article  Google Scholar 

  2. Chen, Z., Li, J., Wang, S., Wang, J., Ma, L.: Flexible gait transition for six wheel-legged robot with unstructured terrains. Robot. Auton. Syst. 150, 103989 (2022)

    Article  Google Scholar 

  3. Chen, Z., Wang, S., Wang, J., Xu, K.: Attitude stability control for multi-agent six wheel-legged robot. IFAC-PapersOnLine 53(2), 9636–9641 (2020)

    Article  Google Scholar 

  4. Chen, Z., et al.: Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. 108, 367–380 (2021)

    Article  Google Scholar 

  5. Dai, Y., Wang, J., Li, J., Li, J.: MDRNet: a lightweight network for real-time semantic segmentation in street scenes. Assem. Autom. 41(6), 725–733 (2021)

    Article  Google Scholar 

  6. Deng, C., Wang, S., Chen, Z., Wang, J., Ma, L., Li, J.: CPG-inspired gait generation and transition control for six wheel-legged robot. In: 2021 China Automation Congress (CAC), pp. 2310–2315. IEEE (2021)

    Google Scholar 

  7. Gan, M.G., He, Y.: Adaptive depth-aware visual relationship detection. Knowl.-Based Syst. 247, 108786 (2022)

    Article  Google Scholar 

  8. Kou, B., Zhao, X., Wang, M., Chen, W.: Overview of negative-saliency permanent magnet synchronous motors and its control technology. Proc. CSEE 39(8), 2414–2425 (2019)

    Google Scholar 

  9. Li, J., Dai, Y., Wang, J., Su, X., Ma, R.: Towards broad learning networks on unmanned mobile robot for semantic segmentation. In: 2022 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2022)

    Google Scholar 

  10. Li, J., Wang, J., Peng, H., Hu, Y., Su, H.: Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 52(4), 2491–2500 (2022)

    Article  Google Scholar 

  11. Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., Su, H.: Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing 410, 342–353 (2020)

    Article  Google Scholar 

  12. Li, J., et al.: Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assem. Autom. 40(5), 675–687 (2020)

    Article  Google Scholar 

  13. Li, J., et al.: Neural approximation-based model predictive tracking control of non-holonomic wheel-legged robots. Int. J. Control Autom. Syst. 19(1), 372–381 (2021)

    Article  Google Scholar 

  14. Li, J., Wang, J., Wang, S., Yang, C.: Human–robot skill transmission for mobile robot via learning by demonstration. Neural Comput. Appl. 1–11 (2021). https://doi.org/10.1007/s00521-021-06449-x

  15. Li, J., Wang, S., Wang, J., Li, J., Zhao, J., Ma, L.: Iterative learning control for a distributed cloud robot with payload delivery. Assem. Autom. 41(3), 263–273 (2021). https://doi.org/10.1108/AA-11-2020-0179

    Article  Google Scholar 

  16. Li, J., Li, R., Li, J., Wang, J., Wu, Q., Liu, X.: Dual-view 3D object recognition and detection via lidar point cloud and camera image. Robot. Auton. Syst. 150, 103999 (2022)

    Article  Google Scholar 

  17. Li, J., Qin, H., Wang, J., Li, J.: OpenStreetMap-based autonomous navigation for the four wheel-legged robot via 3D-LiDAR and CCD camera. IEEE Trans. Industr. Electron. 69(3), 2708–2717 (2022)

    Article  Google Scholar 

  18. Li, J., Shi, X., Li, J., Zhang, X., Wang, J.: Random curiosity-driven exploration in deep reinforcement learning. Neurocomputing 418, 139–147 (2020)

    Article  Google Scholar 

  19. Li, J., Wu, Q., Wang, J., Li, J.: Neural networks-based sliding mode tracking control for the four wheel-legged robot under uncertain interaction. Int. J. Robust Nonlinear Control 31, 4306–4323 (2021)

    Article  Google Scholar 

  20. Li, J., Zhang, X., Li, J., Liu, Y., Wang, J.: Building and optimization of 3d semantic map based on lidar and camera fusion. Neurocomputing 409, 394–407 (2020)

    Article  Google Scholar 

  21. Peng, G., Yang, C., He, W., Chen, C.P.: Force sensorless admittance control with neural learning for robots with actuator saturation. IEEE Trans. Ind. Electron. 67(4), 3138–3148 (2019)

    Article  Google Scholar 

  22. Rui, L., Jian-fang, J., Rui-feng, Y.: Overview on control strategies of load simulator. Chin. Hydraul. Pneumatics 10, 12–16 (2012)

    Google Scholar 

  23. Su, H., et al.: Improving motion planning for surgical robot with active constraints. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3151–3156 (2020)

    Google Scholar 

  24. Su, H., et al.: Internet of Things (IoT)-based collaborative control of a redundant manipulator for teleoperated minimally invasive surgeries. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9737–9742 (2020)

    Google Scholar 

  25. Wang, R., Chen, Z., Xu, K., Wang, S., Wang, J., Li, B.: Hybrid obstacle-surmounting gait for hexapod wheel-legged robot in special terrain. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 1–6. IEEE (2021)

    Google Scholar 

  26. Wang, S., Chen, Z., Li, J., Wang, J., Li, J., Zhao, J.: Flexible motion framework of the six wheel-legged robot: experimental results. IEEE/ASME Trans. Mechatron. (2021)

    Google Scholar 

  27. Wang, X., Feng, D.: Experimental research on DC load simulator test bed with elastic rod. Electr. Mach. Control 16(09), 91–94 (2012)

    Google Scholar 

  28. Wang, X.y., Zhang, G.w., Li, Z.s.: Composite control for electric load simulator based on parameter estimation. Small Special Electr. Mach. 44(11), 57–61 (2016)

    Google Scholar 

  29. Xue, J., Li, J., Chen, Z., Wang, S., Wang, J., Ma, R.: Gait planning and control of hexapod robot based on velocity vector. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 616–620. IEEE (2021)

    Google Scholar 

  30. Yang, C., Chen, C., Wang, N., Ju, Z., Fu, J., Wang, M.: Biologically inspired motion modeling and neural control for robot learning from demonstrations. IEEE Trans. Cogn. Dev. Syst. 11(2), 281–291 (2018)

    Google Scholar 

  31. Yang, C., Luo, J., Liu, C., Li, M., Dai, S.L.: Haptics electromyography perception and learning enhanced intelligence for teleoperated robot. IEEE Trans. Autom. Sci. Eng. 16(4), 1512–1521 (2018)

    Article  Google Scholar 

  32. Zhang, K., Wang, L., Fang, X.: Feedback linearization adaptive dynamic sliding mode control of linear synchronous motor for CNC machine tools. J. Electr. Eng. Technol. 1–9 (2021). https://doi.org/10.1007/s42835-021-00930-2

  33. Zhao, W., Tang, Q., Zhang, M.: Disturbance torque suppression and improved dynamic loading performance for electric torque loading simulator. J. Harbin Eng. Univ. 37(11), 1586–1593 (2016)

    Google Scholar 

  34. Zhihua, C., Shoukun, W., Kang, X., Junzheng, W., Jiangbo, Z., Shanshuai, N.: Research on high precision control of joint position servo system for hydraulic quadruped robot. In: 2019 Chinese Control Conference (CCC), pp. 755–760. IEEE (2019)

    Google Scholar 

  35. Zhou, M., Sun, S.: Principle and Application of Genetic Algorithm. National Defense Industry Press, Beijing (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, S., Zhang, W., Li, T., Zhan, G. (2022). Optimal Control Method of Motor Torque Loading Based on Genetic Algorithm. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics