Skip to main content

Solid State

  • Chapter
  • First Online:
Topological Approaches to the Chemical Bond

Abstract

We will examine in this section some of the special features of the application of the topology to condensed phase systems, in particular to periodic crystals. We have already presented what type of information can be extracted from the topological analysis in isolated molecules. The conclusions obtained thereby are basically transferable to the study of molecular crystals, as long as we restrict ourselves to the molecules that constitute the condensed phase system. Much more interesting is the study of the intermolecular behavior in molecular crystals, or the interatomic one in non-molecular systems. As we will see, the application of the theory to the latter regenerates the geometrization of the chemical physics of solids so common in the the first half of the last century. The study of intermolecular interactions using topology is relatively novel, partly due to the difficulty with which such systems are handled by the available ab initio methods, and partly because of the lack of existing chemical intuition as far as their characterization and bond properties are concerned. We will start by examining some essential characteristics of the topological method in periodic domains. Following the same approach as in the previous chapter, we will then analyze structure and reactivity in crystals, characterizing prototype examples and then bonding and coordination changes during phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In geometry, the dual polyhedron is a figure where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Hence, the dual of a tetrahedron is another tetrahedron (inverted with respect to the first one); the dual polyhedron of a cube is an octahedron (and vice versa), etc.

  2. 2.

    Note that since the position of the bond charge will vary, this constant will not be the same for all zinc-blende solids in this BCM approach.

  3. 3.

    Recall that Pauli kinetic energy density is given by

    $$\begin{aligned} t_P(\textbf{r})=t(\textbf{r})-\frac{1}{8}\frac{|\nabla \rho (\boldsymbol{r})|^2}{\rho (\boldsymbol{r})}. \end{aligned}$$

    Using Eq. 7.21,

    $$\begin{aligned} t_P(\boldsymbol{r}) \simeq \frac{3}{10}(3\pi ^2)^{2/3}[\rho (\vec {r})]^{5/3}+\frac{1}{72}\frac{|\nabla \rho (\vec {r})|^2}{\rho (\vec {r})}+\frac{1}{6}\nabla ^2\rho (\vec {r})-\frac{1}{8}\frac{|\nabla \rho (\boldsymbol{r})|^2}{\rho (\boldsymbol{r})} \end{aligned}$$
    $$\begin{aligned} =\frac{3}{10}(3\pi ^2)^{2/3}[\rho (\boldsymbol{r})]^{5/3}-\frac{1}{9}\frac{|\nabla \rho (\boldsymbol{r})|^2}{\rho (\boldsymbol{r})}+\frac{1}{6}\nabla ^2\rho (\boldsymbol{r}) \end{aligned}$$

    .

References

  1. Anderson, W.P., Burdett, J.K., Czech, P.T.: What is the metallic bond? J. Am. Chem. Soc. 116, 8808 (1994)

    Article  CAS  Google Scholar 

  2. Andrés, J., Beltrán, A.: An ab initio perturbed ion study of bulk ceria. Chem. Phys. Lett. 221, 249 (1994)

    Article  Google Scholar 

  3. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Plublishing (1988)

    Google Scholar 

  4. Becker, D., Beck, H.P.: Ab initio investigations of TLI-type compounds under high pressure. Z. Kristallogr. 219, 348 (2004)

    Google Scholar 

  5. Biegler-König, F.W., Bader, R.F.W., Tang, T.: Calculation of the average properties of atoms in molecules. ii. J. Comput. Chem. 3, 317 (1982)

    Google Scholar 

  6. Brock, C.P.: Crystal packing in vicinal diols CnHm(OH)\(_2\). Acta Crystallogr.llogr. B 58, 1025 (2002)

    Google Scholar 

  7. Bučinský, L., Jayatilaka, D., Grabowsky, S.: Relativistic quantum crystallography of diphenyl- and dicyanomercury. Theoretical structure factors and Hirshfeld atom refinement. Acta Crystallogr. A 75(5), 705 (2019)

    Google Scholar 

  8. Buerger, J.: Phase Transformation in Solids. Wiley, New York, USA (1951)

    Google Scholar 

  9. Bytheway, I., Gillespie, R.J., Tang, T.H., Bader, R.F.W.: Core distortions and geometries of the difluorides and dihydrides Ca, Sr, and Ba. Inorg. Chem. 34, 2407 (1995)

    Google Scholar 

  10. Carmo, M.: Differential Geometry of Curves and Surfaces. Dover Publications, Mineola, New York (2016)

    Google Scholar 

  11. Cohen, M.L.: Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32, 7988 (1985)

    Article  CAS  Google Scholar 

  12. Contreras-Garcí, M.L.: Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32, 7988 (1985)

    Google Scholar 

  13. Contreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.P., Beratan, D.N., Yang, W.: NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625 (2011)

    Google Scholar 

  14. Contreras-García, J., Marques, M., Menendez, J., Recio, J.: From elf to compressibility in solids. Int. J. Mol. Sci. 16, 8151 (2015)

    Google Scholar 

  15. Contreras-García, J., Martín Pendás, A., Recio, J.M.: How electron localization function quantifies and pictures chemical changes in a solid: the B3-B1 pressure induced phase transition in beo. J. Phy. Chem. B 112, 9787 (2008)

    Google Scholar 

  16. Contreras-García, J., Mori-Sánchez, P., Silvi, B., Recio, J.M.: A quantum chemical interpretation of compressibility in solids. J. Chem. Theory Comput. 5, 2108 (2009)

    Article  PubMed  Google Scholar 

  17. Contreras-García, J., Recio, J.M.: On bonding in ionic crystals. J. Phys. Chem. C 115, 257 (2011)

    Article  Google Scholar 

  18. Costales, A., Martín Pendás, A., Luaña, V., Blanco, M.A.: Ions in crystals: the topology of the electron density in ionic materials. v. the B1\(\rightleftharpoons \)B2 phase transition in alkali halides. Phys. Rev. B 62, 12,028 (1998)

    Google Scholar 

  19. Custelcean, R., Jackson, J.E.: Dihydrogen bonding: structures, energetics, and dynamics. Chem Rev 101(7), 1963–1980 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Erements, M.L., Hemley, R.J., Mao, H., Gregoryanz, E.: Semiconducting non-molecular nitrogen up to 240GPa and its low-pressure stability. Nature 411, 170 (2001)

    Google Scholar 

  21. Genoni, A.: A first-prototype multi-determinant X-ray constrained wavefunction approach: the X-ray constrained extremely localized molecular orbital–valence bond method. Acta Crystallogr. A 73, 312 (2017)

    Google Scholar 

  22. Giacovazzo, C.: Fundamentals of crystallography. International Union of Crystallography Oxford University Press, Chester, England Oxford New York (1992)

    Google Scholar 

  23. Gillespie, R.J.: The valence-shell electron-pair repulsion (vsepr) theory of directed valency. J. Chem. Educ. 40, 295 (1963)

    Article  CAS  Google Scholar 

  24. Gillespie, R.J., Silvi, B.: The octet rule and hypervalence: two misunderstood concepts. Coord. Chem. Rev. 53, 233 (2002)

    Google Scholar 

  25. Grin, Y., Fedorchuk, A., Faria, R., Wagner, F.: Atomic charges and chemical bonding in Y-Ga compounds. Crystals 8, 99 (2018)

    Google Scholar 

  26. Hemley, R.J.: Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 773 (2000)

    Article  Google Scholar 

  27. http://www.cpfs.mpg.de/ELF

  28. Jayatilaka, D., Grimwood, D.J.: Electron localization functions obtained from X-ray constrained Hartree-Fock wavefunctions for molecular crystals of ammonia, urea and alloxan. Acta Crystallogr. A 60, 111 (2004)

    Google Scholar 

  29. Rosenfield, R. E. Jr., Parthasarathy, R., Dunitz, J.D.: Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophile. J. Am. Chem. Soc. 99, 4860 (1977)

    Google Scholar 

  30. Kittel, C.: Introduction to Solid State Physics. Wiley (2004)

    Google Scholar 

  31. Koch, U., Popelier, P.L.A.: Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747 (1995)

    Google Scholar 

  32. Kohout, M., Wagner, F.R., Grin, Y.: Electron localization function for transition-metal compounds. Theor. Chem. Acc. 108, 150 (2002)

    Article  CAS  Google Scholar 

  33. Labet, V., Gonzalez-Morelos, P., Hoffmann, R., , Ashcroft, N.W.: A fresh look at dense hydrogen under pressure. i. an introduction to the problem, and an index probing equalization of H–H distances. J. Chem. Phys. 136, 074,501 (2012)

    Google Scholar 

  34. Labet, V., Hoffmann, R., Ashcroft, N.W.: A fresh look at dense hydrogen under pressure. ii. chemical and physical models aiding our understanding of evolving H–H separations. J. Chem. Phys. 136, 074,502 (2012)

    Google Scholar 

  35. Leoni, S., Carrillo-Cabrera, W., Schnelle, W., Grin, Y.: BaAl\(_2\)Ge\(_2\): synthesis, crystal structure, magnetic and electronic properties, chemical bonding, and atomistic model of the \(\alpha \leftrightarrow \beta \) phase transition. Solid State Sci. 5, 139 (2003)

    Article  CAS  Google Scholar 

  36. Lewis, G.N.: Valence and the structure of atoms and molecules. Dover, New York (1966)

    Google Scholar 

  37. Lyssenko, K.A., Antipin, M.Y., Gurskii, M.E., Bubnov, Y.N., Karionova, A.L., Boese, R.: Characterization of the \(B\cdot \cdot \cdot \)\({\pi }\)-system interaction via topology of the experimental charge density distribution in the crystal of 3-chloro-7-\(\alpha \)-phenyl-3-borabicyclo[3.3.1]nonane. Chem. Phys. Lett. 384, 40 (2004)

    Google Scholar 

  38. Malcolm, N.O.J., Popelier, P.L.A.: An improved algorithm to locate critical points in a 3D scalar field as implemented in the program morphy. J. Comput. Chem. 24, 437 (2003)

    Google Scholar 

  39. Manca, P.: A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure. J. Phys. Chem. Solids 20, 268 (1961)

    Article  CAS  Google Scholar 

  40. Martín Pendás, A.: Stress and pressure in the theory of atoms in molecules. J. Chem. Phys. 117, 965 (2002)

    Article  Google Scholar 

  41. Martín Pendás, A., Costales, A., Luaña, V.: Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals. Phys. Rev. B 55, 4275 (1997)

    Google Scholar 

  42. Martín Pendás, A., Costales, A., Luaña, V.: Ions in crystals: The topology of the electron-density in ionic materials. III. geometry and ionic-radii. J. Phys. Chem. B 102, 6937 (1998)

    Google Scholar 

  43. Martín Pendás, A., Luaña, V., Recio, J.M., Flórez, M., Francisco, E., Blanco, M.A., Kantorovich, L.N.: Pressure-induced B1–B2 phase transition in alkali halides: General aspects from first-principles calculations. Phys. Rev. B 49, 3066 (1994)

    Google Scholar 

  44. Matta, C.F., Hernández-Trujillo, J., Tang, T., Bader, R.F.W.: Hydrogen-hydrogen bonding: A stabilizing interaction in molecules and crystals. Chem. Eur. J. 9, 1940 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. Miao, M.S., Lambrecht, W.R.L.: Universal transition state for high-pressure zinc blende to rocksalt phase transitions. Phys. Rev. Lett. 94, 225,501 (2005)

    Google Scholar 

  46. Mori-Sánchez, P., Recio, J.M., Silvi, B., Sousa, C., Martín Pendás, A., Luaña V.and Illas, F.: Rigorous characterization of oxygen vacancies in ionic oxides. Phys. Rev. B 66, 075,103 (2002)

    Google Scholar 

  47. Morrison, C.A., Siddick, M.M.: Dihydrogen bonds in solid bh\(_3\)nh\(_3\). Angew. Chem. Int. Ed. 116, 4780 (2004)

    Article  Google Scholar 

  48. Ormeci, A., Rosner, H.: Electronic structure and bonding in antimony and its high pressure phases. Z. Kristallogr. 219, 370 (2004)

    Article  CAS  Google Scholar 

  49. Pickard, J., C., Needs, R.J.: Structure of phase III of solid hydrogen. Nat. Phys. 3, 473 (2007)

    Google Scholar 

  50. Popelier, P.L.A.: Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A 102, 1873 (1998)

    Article  CAS  Google Scholar 

  51. Presti, L.L., Soave, R., Destro, R.: On the interplay between CH \(\cdots \) O and OH \(\cdots \) O interactions in determining crystal packing and molecular conformation: an experimental and theoretical charge density study of the fungal secondary metabolite austdiol (C\(_{12}\)H\(_{12}\)O\(_5\)). J. Phys. Chem. B 110, 6405 (2006)

    Google Scholar 

  52. Riffet, V., Labet, V., Contreras-García, J.: A topological study of chemical bonds under pressure: solid hydrogen as a model case. Phys. Chem. Chem. Phys. 19, 26,381 (2017)

    Google Scholar 

  53. Rousseau, B., Ashcroft, N.W.: Interstitial electronic localization. Phys. Rev. Lett. 101, 046,407 (2008)

    Google Scholar 

  54. Saleh, G., Gatti, C., Presti, L.L., Contreras-Garcia, J.: Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chem. Eur. J. 18, 15,523 (2012)

    Google Scholar 

  55. Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925 (1969)

    Article  CAS  Google Scholar 

  56. Silvi, B., Gatti, C.: Direct space representation of the metallic bond. J. Phys. Chem. 104, 947 (2000)

    Article  CAS  Google Scholar 

  57. Silvi, B., Jolly, L., Darco, P.: Pseudopotential periodic hartree-fock study of the cristobalite to stishovite phase transition. Theochem. J. Mol. Struct. 92, 1 (1992)

    Article  CAS  Google Scholar 

  58. Tsirelson, V., Stash, A.: Determination of the electron localization function from electron density. Chem. Phys. Lett. 351, 142 (2002)

    Article  CAS  Google Scholar 

  59. Volkov, A., Gatti, C., Abramov, Y., Coppens, P.: Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density. Acta Crystallogr. A 56(3), 252 (2000)

    Article  PubMed  Google Scholar 

  60. Woińska, M., Grabowsky, S., Dominiak, P.M., Woźniak, K., Jayatilaka, D.: Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Sci. Adv. 2(5) (2016)

    Google Scholar 

  61. Zha, C.S., Liu, Z., Hemley, R.J.: Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett. 108, 146,402 (2012)

    Google Scholar 

  62. Zou, P.F., Bader, R.F.W.: A topological definition of a Wigner-Seitz cell and the atomic scattering factor. Acta Crystallogr. A 50, 714 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Martín Pendás .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín Pendás, Á., Contreras-García, J. (2023). Solid State. In: Topological Approaches to the Chemical Bond. Theoretical Chemistry and Computational Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-13666-5_7

Download citation

Publish with us

Policies and ethics