Skip to main content

Supraspinale Reaktionen und spinale Reflexe

  • Chapter
  • First Online:
Handbuch für Vibrationstraining und Vibrationstherapie
  • 407 Accesses

Zusammenfassung

Wenn Vibrationen, die durch harmonische mechanische Schwingungen hervorgerufen werden, auf den gesamten menschlichen Körper oder einzelne Segmente und Strukturen einwirken, treten verschiedene kurz- und langfristige neuronale Veränderungen auf. Dieses Kapitel gibt einen Überblick über die Auswirkungen von Vibrationsreizen auf das zentrale Nervensystem. Zunächst wird die modulatorische Wirkung von Vibrationen auf der supraspinalen Ebene beschrieben, z. B. auf die Erregbarkeit der sensomotorischen Netzwerke sowie auf die intra- und interhemisphärischen kortikalen Prozesse. Die Auswirkungen auf die neuronale Leitung, die Aktivierungsschwellen der Motoneurone, die Fazilitation und die Inhibition werden ebenfalls beschrieben. Zweitens werden die hemmenden und fördernden Wirkungen von Vibrationen auf der spinalen Ebene untersucht, z. B. auf die Erregbarkeit des Alpha-Motoneuronenpools sowie auf die prä- und postsynaptische neuronale Übertragung. Zusammengenommen deuten die Ergebnisse von Experimenten am Menschen, bei denen fokale oder Ganzkörpervibrationen eingesetzt wurden, darauf hin, dass Vibrationen die akuten und chronischen neuromuskulären Reaktionen verstärken, die bei Übungen mit geringer Intensität erzielt werden, wie z. B. erhöhte Kraft und Leistung, verbesserte Mobilität und Flexibilität, Gleichgewicht und Haltungskontrolle. Diese Effekte lassen sich im Training und bei der Therapie strategisch nutzen und sind besonders für ältere Menschen und Patienten mit neuronalen Störungen von Vorteil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Cochrane DJ. Vibration exercise: the potential benefits. Int J Sports Med. 2011;32(2):75–99.

    Article  CAS  PubMed  Google Scholar 

  2. Mileva KN, Naleem AA, Biswas SK, Marwood S, Bowtell JL. Acute effects of a vibration-like stimulus during knee extension exercise. Med Sci Sports Exerc. 2006;38(7):1317–28.

    Article  PubMed  Google Scholar 

  3. Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. J Strength Cond Res. 2006;20(1):124–9.

    PubMed  Google Scholar 

  4. Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):1033–41.

    Article  PubMed  Google Scholar 

  5. Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(9):1642–50.

    Article  PubMed  Google Scholar 

  6. Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W. EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol. 2010;110(1):143–51.

    Article  PubMed  Google Scholar 

  7. Souron R, Besson T, Millet GY, Lapole T. Acute and chronic neuromuscular adaptations to local vibration training. Eur J Appl Physiol. 2017;117(10):1939–64.

    Article  CAS  PubMed  Google Scholar 

  8. Kinser AM, Ramsey MW, O’Bryant HS, Ayres CA, Sands WA, Stone MH. Vibration and stretching effects on flexibility and explosive strength in young gymnasts. Med Sci Sports Exerc. 2008;40(1):133–40.

    Article  PubMed  Google Scholar 

  9. Cardinale M, Lim J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res. 2003;17(3):621–4.

    PubMed  Google Scholar 

  10. Hazell TJ, Jakobi JM, Kenno KA. The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl Physiol Nutr Metab. 2007;32(6):1156–63.

    Article  PubMed  Google Scholar 

  11. Bruyere O, Wuidart MA, Di Palma E, Gourlay M, Ethgen O, Richy F, et al. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil. 2005;86(2):303–7.

    Article  PubMed  Google Scholar 

  12. Schuhfried O, Mittermaier C, Jovanovic T, Pieber K, Paternostro-Sluga T. Effects of whole-body vibration in patients with multiple sclerosis: a pilot study. Clin Rehabil. 2005;19(8):834–42.

    Article  PubMed  Google Scholar 

  13. Krause A, Lee K, Freyler K, Buhrer T, Gollhofer A, Ritzmann R. Whole-body vibration impedes the deterioration of postural control in patients with multiple sclerosis. Mult Scler Relat Disord. 2019;31:134–40.

    Article  PubMed  Google Scholar 

  14. Zheng YL, Wang XF, Chen BL, Gu W, Wang X, Xu B, et al. Effect of 12-week whole-body vibration exercise on lumbopelvic proprioception and pain control in young adults with nonspecific low back pain. Med Sci Monit. 2019;25:443–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jepsen DB, Thomsen K, Hansen S, Jorgensen NR, Masud T, Ryg J. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis. BMJ Open. 2017;7(12):e018342.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bowtell JL, Jackman SR, Scott S, Connolly LJ, Mohr M, Ermidis G, et al. Short duration small sided football and to a lesser extent whole body vibration exercise induce acute changes in markers of bone turnover. Biomed Res Int. 2016;2016:3574258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blottner D, Salanova M, Puttmann B, Schiffl G, Felsenberg D, Buehring B, et al. Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol. 2006;97(3):261–71.

    Article  PubMed  Google Scholar 

  18. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46(1):137–47.

    Article  PubMed  Google Scholar 

  19. Gaffney CJ, Fomina E, Babich D, Kitov V, Uskov K, Green DA. The effect of long-term confinement and the efficacy of exercise countermeasures on muscle strength during a simulated mission to Mars: data from the Mars500 study. Sports Med Open. 2017;3(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, et al. Plasticity induced in the human spinal cord by focal muscle vibration. Front Neurol. 2018;9:935.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wiesendanger M, Miles TS. Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev. 1982;62(4 Pt 1):1234–70.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis GN, Byblow WD. A method to monitor corticomotor excitability during passive rhythmic movement of the upper limb. Brain Res Brain Res Protoc. 2001;8(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  23. Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, et al. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol. 2004;560(Pt 3):929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB, Burke D. The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. J Physiol. 1993;471:429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 1989;76(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  26. Munte TF, Jobges EM, Wieringa BM, Klein S, Schubert M, Johannes S, et al. Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett. 1996;216(3):163–6.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor WT, Taylor JL, Seizova-Cajic T. Muscle vibration-induced illusions: review of contributing factors, taxonomy of illusions and user’s guide. Multisens Res. 2017;30(1):37.

    Article  Google Scholar 

  28. Claus D, Mills KR, Murray NM. The influence of vibration on the excitability of alpha motoneurones. Electroencephalogr Clin Neurophysiol. 1988;69(5):431–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kossev A, Siggelkow S, Kapels H, Dengler R, Rollnik JD. Crossed effects of muscle vibration on motor-evoked potentials. Clin Neurophysiol. 2001;112(3):453–6.

    Article  CAS  PubMed  Google Scholar 

  30. Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol. 2009;94(1):103–16.

    Article  PubMed  Google Scholar 

  31. Krause A, Gollhofer A, Freyler K, Jablonka L, Ritzmann R. Acute corticospinal and spinal modulation after whole body vibration. J Musculoskelet Neuronal Interact. 2016;16(4):327–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lapole T, Tindel J. Acute effects of muscle vibration on sensorimotor integration. Neurosci Lett. 2015;587:46–50.

    Article  CAS  PubMed  Google Scholar 

  33. Siggelkow S, Kossev A, Schubert M, Kappels HH, Wolf W, Dengler R. Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency. Muscle Nerve. 1999;22(11):1544–8.

    Article  CAS  PubMed  Google Scholar 

  34. Swayne O, Rothwell J, Rosenkranz K. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand. Clin Neurophysiol. 2006;117(4):855–63.

    Article  PubMed  Google Scholar 

  35. Kossev A, Siggelkow S, Schubert M, Wohlfarth K, Dengler R. Muscle vibration: different effects on transcranial magnetic and electrical stimulation. Muscle Nerve. 1999;22(7):946–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol. 2003;551(Pt 2):649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86(6):455–68.

    Article  PubMed  Google Scholar 

  38. Romaiguere P, Vedel JP, Azulay JP, Pagni S. Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man. J Physiol. 1991;444:645–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ritzmann R, Kramer A, Gollhofer A, Taube W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. 2013;23(3):331–9.

    Article  CAS  PubMed  Google Scholar 

  40. Armstrong WJ, Nestle HN, Grinnell DC, Cole LD, Van Gilder EL, Warren GS, et al. The acute effect of whole-body vibration on the Hoffmann reflex. J Strength Cond Res. 2008;22(2):471–6.

    Article  PubMed  Google Scholar 

  41. Cakar HI, Cidem M, Kara S, Karacan I. Vibration paradox and H-reflex suppression: is H-reflex suppression results from distorting effect of vibration? J Musculoskelet Neuronal Interact. 2014;14(3):318–24.

    CAS  PubMed  Google Scholar 

  42. Ekblom MM, Thorstensson A. Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sports Exerc. 2011;43(10):1933–9.

    Article  PubMed  Google Scholar 

  43. Lapole T, Perot C. Hoffmann reflex is increased after 14 days of daily repeated Achilles tendon vibration for the soleus but not for the gastrocnemii muscles. Appl Physiol Nutr Metab. 2012;37(1):14–20.

    Article  PubMed  Google Scholar 

  44. Lapole T, Canon F, Perot C. Acute postural modulation of the soleus H-reflex after Achilles tendon vibration. Neurosci Lett. 2012;523(2):154–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hopkins JT, Fredericks D, Guyon PW, Parker S, Gage M, Feland JB, et al. Whole body vibration does not potentiate the stretch reflex. Int J Sports Med. 2009;30(2):124–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kipp K, Johnson ST, Doeringer JR, Hoffman MA. Spinal reflex excitability and homosynaptic depression after a bout of whole-body vibration. Muscle Nerve. 2011;43(2):259–62.

    Article  PubMed  Google Scholar 

  47. Hayward LF, Nielsen RP, Heckman CJ, Hutton RS. Tendon vibration-induced inhibition of human and cat triceps surae group I reflexes: evidence of selective Ib afferent fiber activation. Exp Neurol. 1986;94(2):333–47.

    Article  CAS  PubMed  Google Scholar 

  48. Ushiyama H, Takatsuka K. Extended quantization condition for constructive and destructive interferences and trajectories dominating molecular vibrational eigenstates. J Chem Phys. 2005;122(22):224112.

    Article  PubMed  Google Scholar 

  49. Lapole T, Deroussen F, Perot C, Petitjean M. Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Appl Physiol Nutr Metab. 2012;37(4):657–63.

    Article  PubMed  Google Scholar 

  50. Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol. 1987;28(4):345–76.

    Article  CAS  PubMed  Google Scholar 

  51. Sayenko DG, Masani K, Alizadeh-Meghrazi M, Popovic MR, Craven BC. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neurosci Lett. 2010;482(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  52. Desmedt JE, Godaux E. Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J Physiol. 1978;285:197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karacan I, Cidem M, Yilmaz G, Sebik O, Cakar HI, Turker KS. Tendon reflex is suppressed during whole-body vibration. J Electromyogr Kinesiol. 2016;30:191–5.

    Article  PubMed  Google Scholar 

  54. Christova M, Rafolt D, Golaszewski S, Gallasch E. Outlasting corticomotor excitability changes induced by 25 Hz whole-hand mechanical stimulation. Eur J Appl Physiol. 2011;111(12):3051–9.

    Article  PubMed  Google Scholar 

  55. McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. Front Hum Neurosci. 2013;7:152.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chang SH, Tseng SC, McHenry CL, Littmann AE, Suneja M, Shields RK. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury. Clin Neurophysiol. 2012;123(3):558–68.

    Article  CAS  PubMed  Google Scholar 

  57. Cody FW, Plant T. Vibration-evoked reciprocal inhibition between human wrist muscles. Exp Brain Res. 1989;78(3):613–23.

    Article  CAS  PubMed  Google Scholar 

  58. Ritzmann R, Krause A, Freyler K, Gollhofer A. Acute whole-body vibration increases reciprocal inhibition. Hum Mov Sci. 2018;60:191–201.

    Article  PubMed  Google Scholar 

  59. Gillies JD, Lance JW, Neilson PD, Tassinari CA. Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol. 1969;205(2):329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E. Assessing changes in presynaptic inhibition of I a fibres: a study in man and the cat. J Physiol. 1987;389:729–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr Dis Treat. 2018;14:1607–25.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zaidell LN, Pollock RD, James DC, Bowtell JL, Newham DJ, Sumners DP, et al. Lower body acceleration and muscular responses to rotational and vertical whole-body vibration at different frequencies and amplitudes. Dose-Response. 2019;17(1):1559325818819946.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Ritzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritzmann, R., Mileva, K. (2023). Supraspinale Reaktionen und spinale Reflexe. In: Rittweger, J. (eds) Handbuch für Vibrationstraining und Vibrationstherapie. Springer, Cham. https://doi.org/10.1007/978-3-031-13621-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13621-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13620-7

  • Online ISBN: 978-3-031-13621-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics