Skip to main content

LSL3D: A Run-Based Connected Component Labeling Algorithm for 3D Volumes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13374))

Abstract

Connect Component Labeling (CCL) has been a fundamental operation in Computer Vision for decades. Most of the literature deals with 2D algorithms for applications like video surveillance or autonomous driving. Nonetheless, the need for 3D algorithms is rising, notably for medical imaging.

While 2D CCL algorithms already generate large amounts of memory accesses and comparisons, 3D ones are even worse. This is the curse of dimensionality. Designing an efficient algorithm should address this problem. This paper introduces a segment-based algorithm for 3D labeling that uses a new strategy to accelerate label equivalence processing to mitigate the impact of higher dimensions. We claim that this new algorithm outperforms State-of-the-Art algorithms by a factor from \(\times \)1.5 up to \(\times \)3.1 for usual medical datasets and random images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abuzaghleh, O., Barkana, B.D., Faezipour, M.: Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J. Transl. Eng. Health Med. 3, 1–12 (2015)

    Article  Google Scholar 

  2. Allegretti, S., Bolelli, F., Grana, C.: Optimized block-based algorithms to label connected components on GPUs. IEEE Trans. Parallel Distrib. Syst. 31(2), 423–438 (2020)

    Article  Google Scholar 

  3. Barnat, J., Bauch, P., Brim, L., Ceška, M.: Computing strongly connected components in parallel on CUDA. In: 2011 IEEE International Parallel Distributed Processing Symposium, pp. 544–555 (2011)

    Google Scholar 

  4. Bolelli, F., Allegretti, S., Grana, C.: One DAG to rule them all. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  5. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected components labeling on DRAGs. In: 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, August 2018, IEEE, pp. 121–126 (2018)

    Google Scholar 

  6. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the performance of connected components labeling algorithms. J. Real-Time Image Process. (JRTIP) 17, 229–244 (2018). https://doi.org/10.1007/s11554-018-0756-1

    Article  Google Scholar 

  7. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)

    Article  Google Scholar 

  8. Chabardès, T., Dokládal, P., Bilodeau, M.: A labeling algorithm based on a forest of decision trees. J. Real-Time Image Proc. 17(5), 1527–1545 (2019). https://doi.org/10.1007/s11554-019-00912-8

    Article  Google Scholar 

  9. Chen, W., Giger, M.L., Bick, U.: A fuzzy C-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13(1), 63–72 (2006)

    Article  Google Scholar 

  10. Farhat, W., Faiedh, H., Souani, C., Besbes, K.: Real-time embedded system for traffic sign recognition based on ZedBoard. J. Real-Time Image Proc. 16(5), 1813–1823 (2017). https://doi.org/10.1007/s11554-017-0689-0

    Article  Google Scholar 

  11. Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_38

    Chapter  Google Scholar 

  12. Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. Trans. Image Process. 19(6), 1596–1609 (2010)

    Article  MathSciNet  Google Scholar 

  13. Gupta, S., Palsetia, D., Patwary, M.A., Agrawal, A., Choudhary, A.: A new parallel algorithm for two-pass connected component labeling. In: Parallel & Distributed Processing Symposium Workshops (IPDPSW), pp. 1355–1362. IEEE (2014)

    Google Scholar 

  14. Haralick, R.: Some neighborhood operations. In: Real-Time Parallel Computing Image Analysis, pp. 11–35. Plenum Press (1981)

    Google Scholar 

  15. He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. In: 2007 IEEE International Conference on Image Processing (San Antonio, TX, USA, 2007), pp. V - 241–V - 244. IEEE (2007)

    Google Scholar 

  16. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recogn. 70, 25–43 (2017)

    Article  Google Scholar 

  17. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hennequin, A., Lacassagne, L., Cabaret, L., Meunier, Q.: A new direct connected component labeling and analysis algorithms for GPUs. In: 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 76–81. IEEE (2018)

    Google Scholar 

  19. Hwu, W.W. (ed.): GPU Computing Gems. Morgan Kaufman (2001). Chap 35: Connected Component Labeling in CUDA

    Google Scholar 

  20. Joshi, K.A., Thakore, D.G.: A survey on moving object detection and tracking in video surveillance system. Int. J. Soft Comput. Eng. 2(3), 44–48 (2012)

    Google Scholar 

  21. Khan, N., et al.: Automatic segmentation of liver & lesion detection using H-minima transform and connecting component labeling. Multimedia Tools Appl. 79(13), 8459–8481 (2019). https://doi.org/10.1007/s11042-019-7347-4

    Article  Google Scholar 

  22. Komura, Y.: GPU-based cluster-labeling algorithm without the use of conventional iteration: application to Swendsen-Wang multi-cluster spin flip algorithm. Comput. Phys. Commun. 194, 54–58 (2015)

    Article  Google Scholar 

  23. Lacassagne, L., Zavidovique, A.B.: Light speed labeling for RISC architectures. In: IEEE International Conference on Image Analysis and Processing (ICIP) (2009)

    Google Scholar 

  24. Lacassagne, L., Zavidovique, B.: Light speed labeling: efficient connected component labeling on RISC architectures. J. Real-Time Image Proc. 6(2), 117–135 (2011)

    Article  Google Scholar 

  25. Lemaitre, F., Hennequin, A., Lacassagne, L.: How to speed connected component labeling up with SIMD RLE algorithms. In: Proceedings of the ACM 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing (San Diego, CA, USA, February 2020), pp. 1–8. ACM (2020)

    Google Scholar 

  26. He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Trans. Image Process. 17(5), 749–756 (2008)

    Article  MathSciNet  Google Scholar 

  27. He, L., Chao, Y., Suzuki, K.: Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. IEEE Trans. Image Process. 20(8), 2122–2134 (2011)

    Article  MathSciNet  Google Scholar 

  28. Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)

    Article  Google Scholar 

  29. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (Portland, OR, USA, June 2013), pp. 1987–1994. IEEE (2013)

    Google Scholar 

  30. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 22(12), 2677–2684 (2010)

    Article  Google Scholar 

  31. Matsumoto, M., Nishimura, T.: Mersenne twister web page. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

  32. Millet, M., Rambaux, N., Petreto, A., Lemaitre, F., Lacassagne, L.: A new processing chain for detection and tracking of meteors from space. In: International Meteor Conference, September 2021

    Google Scholar 

  33. Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M.H., Kalender, O., Ege, Y.: Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 55, 58–65 (2014)

    Article  Google Scholar 

  34. Playne, D.P., Hawick, K.: A new algorithm for parallel connected-component labelling on GPUs. IEEE Trans. Parallel Distrib. Syst. 29(6), 1217–1230 (2018)

    Article  Google Scholar 

  35. Rosenfeld, A., Platz, J.: Sequential operator in digital pictures processing. J. ACM 13(4), 471–494 (1966)

    Article  Google Scholar 

  36. Salau, J., Krieter, J.: Analysing the space-usage-pattern of a cow herd using video surveillance and automated motion detection. Biosys. Eng. 197, 122–134 (2020)

    Article  Google Scholar 

  37. Bolelli, F., Allegretti, S., Grana, C.: A heuristic-based decision tree for connected components labeling of 3D volumes: implementation and reproducibility notes. In: Kerautret, B., Colom, M., Krähenbühl, A., Lopresti, D., Monasse, P., Talbot, H. (eds.) RRPR 2021. LNCS, vol. 12636, pp. 139–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76423-4_9

    Chapter  Google Scholar 

  38. Veillon, F.: One pass computation of morphological and geometrical properties of objects in digital pictures. Signal Process. 1(3), 175–179 (1979)

    Article  MathSciNet  Google Scholar 

  39. Weng, H.-M., Chiu, C.-T.: Resource efficient hardware implementation for real-time traffic sign recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1120–1124. IEEE (2018)

    Google Scholar 

  40. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. In: Fitzpatrick, J.M., Reinhardt, J.M. (eds.) Medical Imaging (San Diego, CA, April 2005), p. 1965 (2005)

    Google Scholar 

  41. Ziegler, G., Rasmusson, A.: Efficient volume segmentation on the GPU. In: GPU Technology Conference, pp. 1–44, Nvidia (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Maurice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maurice, N., Lemaitre, F., Sopena, J., Lacassagne, L. (2022). LSL3D: A Run-Based Connected Component Labeling Algorithm for 3D Volumes. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13374. Springer, Cham. https://doi.org/10.1007/978-3-031-13324-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13324-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13323-7

  • Online ISBN: 978-3-031-13324-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics