Skip to main content

Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

  • 411 Accesses

Abstract

Linking how mycorrhizal biodiversity and functioning are related has been at the forefront of mycorrhizal ecology over the last decades. Typically, plant growth and nutrition are thought as the most important output or function of the mycorrhizal symbiosis, but there are plenty more functions, such as soil aggregation and chemical and pathogen defense, among others. Furthermore, we still do not know how different mycorrhizal types are related to different ecosystem functions. This is especially the case in the southern hemisphere. In this chapter, we conducted a meta-analysis of research in South American mycorrhizal biodiversity and ecosystem functions through a Web of Science search (1945–2021). Overall, we found 532 articles from which 1528 sampling sites were obtained, 80% of them in Brazil, Argentina, and Chile. In 63.09% of the sampling sites, mycorrhizal biodiversity was solely investigated, while this percentage was 12.70% for mycorrhizal functioning. In 24.21% of the sites, both mycorrhizal biodiversity and ecosystem functions were conjointly investigated, a surprisingly high number in comparison at global-scale research. Several biomes were highly understudied: the Atacama Desert, Patagonian Steppe, Cerrado, Chaco, and the Amazonian rainforest. Most mycorrhizal functions (except plant growth and soil aggregation) were understudied, as well as orchid and ericoid mycorrhizal associations. Very specific regions and ecosystems, many located close to big cities, concentrate most of the mycorrhizal research in South America. More baseline research on plant and fungal taxonomy, mycorrhization, and experiments of response to mycorrhizas are very needed to solve these described gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera P, Marín C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic Andosol. Agric Ecosyst Environ 246:86–93

    Article  CAS  Google Scholar 

  • Aguilera P, Borie F, Seguel A, Cornejo P (2019) How does the use of non-host plants affect arbuscular mycorrhizal communities and levels and nature of glomalin in crop rotation systems established in acid Andisols? In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 147–158

    Chapter  Google Scholar 

  • Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P et al (2022) Application of arbuscular mycorrhizal fungi in vineyards: water and biotic stress under a climate change scenario: new challenge for Chilean grapevine crop. Front Microbiol 13:826571

    Article  PubMed  PubMed Central  Google Scholar 

  • Albornoz FE, Dixon KW, Lambers H (2021) Revisiting mycorrhizal dogmas: are mycorrhizas really functioning as they are widely believed to do? Soil Ecol Lett 3(1):73–82

    Article  CAS  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM et al (2018) Structure and function of the global topsoil microbiome. Nature 560(7717):233–237

    Article  CAS  PubMed  Google Scholar 

  • Barceló M, van Bodegom PM, Soudzilovskaia NA (2019) Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J Ecol 107:2564–2573. https://doi.org/10.1111/1365-2745.13275

    Article  Google Scholar 

  • Becerra AG, Cofré MN, García I (2019) Arbuscular mycorrhizal symbiosis in salt-tolerance species and halophytes growing in salt-affected soils of South America. In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 295–314

    Chapter  Google Scholar 

  • Byrnes JE, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A et al (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5(2):111–124

    Article  Google Scholar 

  • Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Bahram M et al (2019) Global mismatches in aboveground and belowground biodiversity. Conserv Biol 33(5):1187–1192

    Article  PubMed  Google Scholar 

  • Cazzolla Gatti R, Reich PB, Gamarra JG, Crowther T, Hui C, Morera A et al (2022) The number of tree species on Earth. Proc Natl Acad Sci U S A 119(6):e2115329119

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, Craig A et al (2016) MycoDB, a global database of plant response to mycorrhizal fungi. Sci Data 3(1):1–10

    Article  Google Scholar 

  • Chen W, Koide RT, Eissenstat DM (2018) Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Funct Ecol 32(4):858–869

    Article  Google Scholar 

  • Cofré MN, Soteras F, Rosario Iglesias MD, Velázquez S, Abarca C, Risio L et al (2019) Biodiversity of arbuscular mycorrhizal fungi in South America: a review. In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 49–72

    Chapter  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406(1-2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytol 220(4):1076–1091

    Article  PubMed  Google Scholar 

  • Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L et al (2019) The global soil community and its influence on biogeochemistry. Science 365(6455):eaav0550

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould: through the action of worms. J. Murray, London

    Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349(6251):970–973

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD et al (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD et al (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4(2):210–220

    Article  PubMed  Google Scholar 

  • Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67(6):534–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchicela J, Sullivan TS, Bontti E, Bever JD (2013) Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J Appl Ecol 50(5):1266–1273

    Article  CAS  Google Scholar 

  • Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD et al (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10:2369

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H et al (2018) Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9(5):e02226

    Article  PubMed  PubMed Central  Google Scholar 

  • Genre A, Lanfranco L, Perotto S, Bonfante P (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18(11):649–660

    Article  CAS  PubMed  Google Scholar 

  • Godoy R, Marín C (2019) Mycorrhizal studies in temperate rainforests of Southern Chile. In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 315–341

    Chapter  Google Scholar 

  • Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A et al (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S et al (2020) Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 11:3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, Montanarella L et al (2021) Tracking, targeting, and conserving soil biodiversity. Science 371(6526):239–241

    Article  CAS  PubMed  Google Scholar 

  • Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB et al (2018) Understanding how microbiomes influence the systems they inhabit. Nat Microbiol 3(9):977–982

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Klironomos JN (2003) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin-Heidelberg, pp 225–242

    Chapter  Google Scholar 

  • Hazard C, Johnson D (2018) Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function? New Phytol 220(4):1122–1128

    Article  PubMed  Google Scholar 

  • Henkel TW, Aime MC, Chin MM, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodivers Conserv 21(9):2195–2220

    Article  Google Scholar 

  • Husbands DR, Henkel TW, Bonito G, Vilgalys R, Smith ME (2013) New species of Xerocomus (Boletales) from the Guiana Shield, with notes on their mycorrhizal status and fruiting occurrence. Mycologia 105(2):422–435

    Article  PubMed  Google Scholar 

  • Irving TB, Alptekin B, Kleven B, Ané JM (2021) A critical review of 25 years of glomalin research: a better mechanical understanding and robust quantification techniques are required. New Phytol 232(4):1572–1581

    Article  PubMed  Google Scholar 

  • Iversen CM, McCormack ML, Powell AS, Blackwood CB, Freschet GT, Kattge J et al (2017) A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol 215(1):15–26

    Article  PubMed  Google Scholar 

  • Johnson NC, Gibson KS (2021) Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Front Plant Sci 11:2316

    Article  Google Scholar 

  • Koele N, Dickie IA, Blum JD, Gleason JD, de Graaf L (2014) Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Biochem 69:63–70

    Article  CAS  Google Scholar 

  • Kokkoris V, Stefani F, Dalpé Y, Dettman J, Corradi N (2020) Nuclear dynamics in the arbuscular mycorrhizal fungi. Trends Plant Sci 25(8):765–778

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Helgason T (2018) In situ mycorrhizal function–knowledge gaps and future directions. New Phytol 220(4):957–962

    Article  PubMed  Google Scholar 

  • Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q et al (2020) Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun 11:6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia LC, Passos JH, Silva JA, Oehl F, Assis DMA (2020) Species diversity of Glomeromycota in Brazilian biomes. Sydowia 72:181–205

    Google Scholar 

  • Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G et al (2018) Redefining ecosystem multifunctionality. Nat Ecol Evol 2(3):427–436

    Article  PubMed  Google Scholar 

  • Marín C, Bueno CG (2019) A systematic review on south American and European mycorrhizal research: is there a need for scientific symbiosis? In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 97–110

    Chapter  Google Scholar 

  • Marín C, van der Heijden MGA (2020) Global soil biodiversity, ecosystem multifunctionality, and the mycorrhizal symbiosis. IMS Newsl 1(3):8–11

    Google Scholar 

  • Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J Soil Sci Plant Nutr 17(4):966–984

    Article  Google Scholar 

  • Marín C, Torres D, Furci G, Godoy R, Palfner G (2018) Estado del arte de la conservación del reino Fungi en Chile. Biodiversidata 7:98–115

    Google Scholar 

  • Marín C, Rubio J, Godoy R (2022) Chilean blind spots in soil biodiversity and ecosystem function research. Austral Ecology. In press. https://doi.org/10.1111/aec.13232

  • Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N et al (2022) The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol 235(1):320–332. https://doi.org/10.1111/nph.18102

    Article  CAS  PubMed  Google Scholar 

  • Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A et al (2018) Cross-scale integration of mycorrhizal function. New Phytol 220(4):941–946

    Article  PubMed  Google Scholar 

  • Moora M (2014) Mycorrhizal traits and plant communities: perspectives for integration. J Veg Sci 25(5):1126–1132

    Article  Google Scholar 

  • Nouhra ER, Palfner G, Kuhar F, Pastor N, Smith ME (2019) Ectomycorrhizal fungi in South America: their diversity in past, present and future research. In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 73–95

    Chapter  Google Scholar 

  • Peña-Venegas CP, Vasco-Palacios AM (2019) Endo-and ectomycorrhizas in tropical ecosystems of Colombia. In: Pagano M, Lugo M (eds) Mycorrhizal fungi in South America. Springer, Cham, pp 111–146

    Chapter  Google Scholar 

  • Phillips HR, Guerra CA, Bartz ML, Briones MJ, Brown G, Crowther TW et al (2019) Global distribution of earthworm diversity. Science 366(6464):480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220(4):1059–1075

    Article  PubMed  Google Scholar 

  • QGIS.org (2021) QGIS Geographic Information System. QGIS Association. http://www.qgis.org

  • Roy M, Schimann H, Braga-Neto R, da Silva RA, Duque J, Frame D et al (2016) Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. Biotropica 48(1):90–100

    Article  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82(8):1140–1165

    Article  CAS  Google Scholar 

  • Singer D, Mitchell EA, Payne RJ, Blandenier Q, Duckert C, Fernández LD et al (2019) Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. Mol Ecol 28(12):3089–3100

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192(3):699–712

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8(1):e55160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soudzilovskaia NA, Vaessen S, Zelfde MVT, Raes N (2017) Global patterns of mycorrhizal distribution and their environmental drivers. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 223–235

    Chapter  Google Scholar 

  • Soudzilovskaia NA, van Bodegom PM, Terrer C, Zelfde MVT, McCallum I, McCormack ML et al (2019) Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun 10:5077

    Article  PubMed  PubMed Central  Google Scholar 

  • Steidinger BS, Crowther TW, Liang J, van Nuland ME, Werner GD, Reich PB et al (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569(7756):404–408

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367(6480):eaba1223

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Mikryukov V, Anslan S, Bahram M, Khalid AN, Corrales A et al (2021) The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers 111(1):573–588

    Article  Google Scholar 

  • Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh-Doust N, Anslan S, et al (2022) Towards understanding diversity, endemicity and global change vulnerability of soil fungi. BioRxiv. https://doi.org/10.1101/2022.03.17.484796

  • Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework. J Ecol 106(2):480–489

    Article  CAS  Google Scholar 

  • Van der Heijden MG, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174(2):244–250

    Article  Google Scholar 

  • Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Article  PubMed  Google Scholar 

  • Vasar M, Davison J, Sepp SK, Oja J, Al-Quraishy S, Bueno CG et al (2022) Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza 32(2):135–144

    Article  PubMed  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    Article  CAS  Google Scholar 

  • Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30(6):671–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MG (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:4841

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurzburger N, Clemmensen KE (2018) From mycorrhizal fungal traits to ecosystem properties–and back again. J Ecol 106(2):463–467

    Article  Google Scholar 

  • Xu X, Wang N, Lipson D, Sinsabaugh R, Schimel J, He L et al (2020) Microbial macroecology: in search of mechanisms governing microbial biogeographic patterns. Glob Ecol Biogeogr 29(11):1870–1886

    Article  Google Scholar 

  • Young JPW (2015) Genome diversity in arbuscular mycorrhizal fungi. Curr Opin Plant Biol 26:113–119

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang C, Luo Y (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun 11:3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

To C. Guillermo Bueno and Carlos A. Guerra for discussion and inspiration for this chapter. To the Fondecyt Project (ANID – Chile) No. 1190642 and to the Convocatoria Nacional Subvención a Instalación Academia 2021 + Folio SA77210019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Marín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marín, C., Godoy, R., Rubio, J. (2022). Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research. In: Lugo, M.A., Pagano, M.C. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-12994-0_22

Download citation

Publish with us

Policies and ethics