Skip to main content

El Niño and the Southern Oscillation

  • Chapter
  • First Online:
An Introduction to Large-Scale Tropical Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 277 Accesses

Abstract

The most significant interannual variability phenomenon of our planet, namely the El Niño and the Southern Oscillation (ENSO), is discussed in this chapter starting with a definition to identify these events. The effort put to observe this phenomenon in the Equatorial Pacific along with the observed features of ENSO is discussed. The theories for the evolution of ENSO are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan R. J., N. Nicholls, P. D. Jones, I. J. Butterworth, 1991: A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. J. Climate, 4, 743–749.

    Google Scholar 

  • Arakawa, A. and W. H. Schubert, 1974: Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.

    Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnections. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    Article  Google Scholar 

  • Barnston AG, Chelliah M, Goldenberg SB. 1997. Documentation of a highly ENSO-related SST region in the Equatorial Pacific. Atmosphere-Ocean 35: 367–383.

    Google Scholar 

  • Battisti, D. S. and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712.

    Google Scholar 

  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820–828.

    Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.

    Google Scholar 

  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 1027–1030.

    Google Scholar 

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827–832.

    Google Scholar 

  • Capotondi, A. and Co-Authors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    Article  Google Scholar 

  • Chen, D., N. Smith, W. Kessler, 2018: The evolving ENSO observing system. National Science Review, 5, 805–807, https://doi.org/10.1093/nsr/nwy137.

    Article  Google Scholar 

  • Chen, H. -C., Y. -H. Tseng, Z. -Z. Hu, and R. Ding, 2020: Enhancing the ENSO predictability beyond the Spring barrier. Sci Rep 10, 984 (2020). https://doi.org/10.1038/s41598-020-57853-7.

  • Chiang, J. C. H. and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2

    Article  Google Scholar 

  • Chiodi, A. M., and D. E. Harrison, 2013: El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Climate, 26, 822–837, https://doi.org/10.1175/JCLI-D-12-00097.1

    Article  Google Scholar 

  • Compo, G. P. and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 1957–1978.

    Google Scholar 

  • Convoy, J.L., J.T. Overpeck, J.E. Cole, T.M. Shanahan, M. Steinitz-Kannan, 2008:Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews, 27, 1166–1180.

    Google Scholar 

  • Cook, E. R., K. J. Achukaitis, B. M. Buckley, R. D. D. Arrigo, G. C. Jacoby, and W. E. Wright, 2010: Asian monsoon failure and megadrought during the last millennium. Science, 486, 486–490.

    Google Scholar 

  • Davis, M., 2001: Late Victorian Holocausts: El Niño Famines and the Making of the Third World (Verso, London).

    Google Scholar 

  • Dommenget, D., T. Bayr, and C. Frauen, 2012: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation, Clim. Dyn., https://doi.org/10.1007/s00382-012-1475-0.

  • Fedorov, A. V., S. Hu, M. Lengaigne, E. Guilyardi, 2014: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44:1381–1401.

    Google Scholar 

  • Glantz, M.H., Katz, R. and Krenz, M. 1987: The societal impacts associated with the 1982–83 worldwide climate anomalies. Report based on the workshop on Economic and Societal impacts Associated with the 1982–83 Worldwide Climate Anomalies, 11–13 November 1985, Lugano , Switzerland: UNEP, NCAR, Boulder, Colorado.

    Google Scholar 

  • Gould, J.,D. Roemmich, S. Wijffels, H. Freeland, M. Ignaszewsky, X. Jianping, S. Pouliquen, Y. Desaubies, U. Send, K. Radhakrishnan, K. Takeuchi, K. Kim, M. Danchenkov, P. Sutton, B. King, B. Owens, S. Riser Argo profiling floats bring new era of in situ ocean observations, Eos, Transactions American Geophysical Union, 85 (2004), pp. 185–191, https://doi.org/10.1029/2004EO190002.

    Article  Google Scholar 

  • Halpern, D., 1987: Observations of annual and El Nino thermal and flow variations at 0°, 110°W and 0°, 95°W during 1980–1985. J. Geophys. Res., 92, 8197–8212.

    Google Scholar 

  • Hanley, D. E., M. A. Bourassa, J. J. O’Brien, S. R. Smith, and E. R. Spade, 2003: A quantitative evaluation of ENSO indices. J. Climate, 16, 1249–1258.

    Google Scholar 

  • Hayes, S. P., L. J. Mangum, J. Picaut, A. Sumi, and K. Takeuchi, 1991: TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72, 339–347.

    Google Scholar 

  • Hendon, H.H., E. Lim, G. Wang, O. Alves, and D. Husdon, 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, https://doi.org/10.1029/2009GL040100.

    Article  Google Scholar 

  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J. Atmos. Sci., 43, 606–630.

    Google Scholar 

  • Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 1277–1293.

    Google Scholar 

  • Horii, T., and K. Hanawa, 2004: A relationship between timing of El Nino onset and subsequent evolution. Geophys. Res. Lett., 31, L06304, https://doi.org/10.1029/2003gl019239.

    Article  Google Scholar 

  • Huang, B., Peter W. Thorne, et. al., 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons. J. Climate, https://doi.org/10.1175/JCLI-D-16-0836.1.

  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño-La Niña amplitude asymmetry, Geophys. Res. Lett., 42, 5556–5563, https://doi.org/10.1002/2015GL064853.

    Article  Google Scholar 

  • Janicot, S., V. Moron, and B. Fontaine, 1996: Sahel droughts and ENSO dynamics. Geophys. Res. Lett., 23, 515–518, https://doi.org/10.1029/96GL00246.

    Article  Google Scholar 

  • Janowiak, J., 1988: An investigation of interannual rainfall variability in Africa. J. Climate, 1, 240–255.

    Google Scholar 

  • Jin, F. F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Cocneptual model. J. Atmos. Sci., 54, 811–829.

    Google Scholar 

  • Jin, F. F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Google Scholar 

  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

    Article  Google Scholar 

  • Kirtman, B. P., 1997: Oceanic Rossby Wave Dynamics and the ENSO period in a coupled model. J. Climate, 10, 1690–1704.

    Google Scholar 

  • Kleeman, R. and A. M. Moore, 1997: A theory for the limitations of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci, 54, 753–767.

    Google Scholar 

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, https://doi.org/10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Kug, J. -S. and Y. -G. Ham, 2011: Are ther two types of La Niña? Geophys. Res. Lett., 38, L16704, https://doi.org/10.1029/2011/GL048237.

  • Lee, S.-K., Wang, C., Mapes, B.E., 2009. A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Clim. 22 (2), 227–284.

    Google Scholar 

  • Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601–620.

    Google Scholar 

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.

    Google Scholar 

  • Marengo, J. A., C. A. Nobre, and J. Tomasella, 2008: The drought of Amazonia in 2005. J. Climate, 21, 495–516.

    Google Scholar 

  • McPhaden, M.J., 2012: A 21st century shift in the relationship between ENSO SST and Warm Water Volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826

    Article  Google Scholar 

  • McPhaden, M. J., A. J. Busalacchi, R. Cheney, and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system. A decade of progress. J. Geophys. Res. (Oceans), https://doi.org/10.1029/97JC02906.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the Equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 3551–3559.

    Google Scholar 

  • Moore, A. M. and R. Kleeman, 1999a: Stochastic forcing of ENSO by the Intraseasonal Oscillation. J. Climate, 12, 1199–1220.

    Google Scholar 

  • Mishra, V., A. D. Tiwari, S. Aadhar, R. Shah, M. Xiao, D. S. Pai, D. Lettenmaier, 2019: Drought and famine in India, 1870–2016. Geophys. Res. Lett., https://doi.org/10.1029/2018GL081477.

  • Misra, V., and Coauthors, 2007: Validating and understanding the ENSO simulation in two coupled climate models. Tellus, 59A, 292–308.

    Google Scholar 

  • Moore, A. M. and R. Kleeman, 1999b: The Nonnormal Nature of El Niño and Intraseasonal variability. J. Climate, 12, 2965–2982.

    Google Scholar 

  • Moy, C.M., G.O. Seltzer, D.T. Rodbell, and D.M. Anderson, 2002: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–165.

    Google Scholar 

  • Munnich, M, M.A. Cane and S.E. Zebiak, 1991: A study of self excited oscillations of the tropical ocean-atmosphere system. II. Nonlinear cases, J. Atmos. Sci., 43, 1238–1248.

    Google Scholar 

  • Newman, M., S.-I. Shin, and M. A. Alexander, 2011a: Natural variation in ENSO flavors. Geophys. Res. Lett., L14705, https://doi.org/10.1029/2011GL047658.

  • Newman, M., M. A. Alexander, and J. D. Scott, 2011b: An empirical model of tropical ocean dynamics. Climate Dynamics, 37, 1823–1841, https://doi.org/10.1007/s00382-011-1034-0

    Article  Google Scholar 

  • Okumura, Y. M. and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 5826–5843.

    Google Scholar 

  • Parhi, P., A. Giannini, P. Gentine, and U. Lall, 2016: Resolving contrasting regional rainfall responses to El Niño over Tropical Africa. J. Climate, 29, 1461–1476.

    Google Scholar 

  • Penland, C. and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024.

    Google Scholar 

  • Philander, S. G., 1983: El Niño-Southern Oscillation phenomena. Nature, 302, 295–301.

    Google Scholar 

  • Picaut, J., F. Masia, Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663–666.

    Google Scholar 

  • Qu, T., and J.-Y. Yu, 2014: ENSO indices from sea surface salinity observed by Aquarius and Argo. J. Oceanogr., 70, 367–375, https://doi.org/10.1007/s10872-014-0238-4.

    Article  Google Scholar 

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperatures and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.

    Google Scholar 

  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268–284.

    Google Scholar 

  • Roy, T., 2016: Were Indian famines ‘Natural’ or ‘Manmade’? LSE working Paper No. 243. Available from: https://www.lse.ac.uk/Economic-History/Assets/Documents/WorkingPapers/Economic-History/2016/WP243.pdf.

  • Saha, S. and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull Am Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1.

    Article  Google Scholar 

  • Schneider, E. K., B. Huang, and J. Shukla, 1995: Ocean wave dynamics and El Niño. J. Climate, 8, 2415–2439.

    Google Scholar 

  • Singh, A., T. Delcroix, and S.Cravatte, 2011: Contrasting the flavors of El Niño and Southern Oscillation using sea surface salinity observations. J. Geophys. Res., 116, C06016, https://doi.org/10.1029/2010JC006862.

    Article  Google Scholar 

  • Song, K. and S. -W. Son, 2018: Revisiting the ENSO-SSW relationship. J. Climate, 31, 2133–2143.

    Google Scholar 

  • Sooraj, K. P., J.-S.Kug, T.Li, and I.-S. Kang, 2009: Impact of El Niño onset timing on the Indian Ocean: Pacific coupling and subsequent El Niño evolution. Theor. Appl. Climatol., 97, 17–27.

    Google Scholar 

  • Su, J., R. Zhang, T. Li, X. Rong, J. S. Ug, and C. C. Hong (2010), Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific, J. Clim., 23, 605–617, https://doi.org/10.1175/2009JCLI2894.1.

    Article  Google Scholar 

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287.

    Google Scholar 

  • TPOS2014: Report of the Tropical Pacific Observation System 2020 (TPOS 2020) Workshop, Vol. 1. Workshop report and recommendations, La Jolla, United States, 27–30 January 2014, pp 66.

    Google Scholar 

  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326–332.

    Google Scholar 

  • Trenberth K. E., D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate 14: 1697–1701.

    Google Scholar 

  • Troup, A. J., 1965. The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490–506.

    Google Scholar 

  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 54, 61–71.

    Google Scholar 

  • Walker, G. T. and E. W. Bliss, 1932: World Weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

    Google Scholar 

  • Wang, C., 2001: A unified oscillator model for the El Niño-Southern Oscillation. J. Climate, 14, 98–115.

    Google Scholar 

  • Weisberg, R. H., and Wang, C., 1997: A western Pacific oscillator paradigm for the El Niño Southern Oscillation. Geophys. Res. Lett., 24, 779–782.

    Google Scholar 

  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteorology, University of Oklahoma, Norman, OK, 52–57.

    Google Scholar 

  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 7129–7132.

    Google Scholar 

  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, https://doi.org/10.1038/nature08316.

  • Zebiak, S. E. and M. A. Cane, 1987: A model for El Niño and the Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, V. (2023). El Niño and the Southern Oscillation. In: An Introduction to Large-Scale Tropical Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12887-5_7

Download citation

Publish with us

Policies and ethics