Skip to main content

Genome Editing advances in Soybean Improvement against Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Soybean Improvement

Abstract

New breeding technologies have enabled scientists to integrate, delete, or replace genes for developing new crop varieties with great ease as compared to conventional breeding approaches. Using site-specific genome editing tools, we are able to pinpoint exact locus and modify it according to desired trait. Among all the genome editing tools, clustered regularly interspersed short palindromic repeats and its associated Cas genes (CRISPR/Cas system) emerged as an ultimate revolutionary approach for editing genomes of almost all organisms (plants, animals, and humans). CRISPR system is playing a key role in editing the genomes of numerous crops for yield enhancement, augmented nutritional value, imparting disease resistance and addressing food security problems. During the last decade, cropping system has changed entirely due to modification of crop genomes by CRISPR technology for being employed to functional genomic studies, upgrading agronomic traits and combating abiotic and biotic stresses. This chapter focuses on engineering abiotic and biotic stress tolerance through CRISPR technology in soybean. Multiple Cas effectors such as, Cas9, CasX, Cas12, Cas13, and Cas14, are currently being used for precise genome editing of numerous crops. These Cas effectors are being used in genome modification of soybean to add, delete, or replace gene cassettes. Applications of CRISPR technology in soybean will result in the production of clean modified plants (without antibiotic resistance gene marker), to enhance yield potential under abiotic and biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aquino-Jarquin G (2019) CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine 18:428–431

    Article  CAS  PubMed  Google Scholar 

  • Axford DS, Morris DP, Mcmurry JL (2017) Cell penetrating peptide-mediated nuclear delivery of Cas9 to enhance the utility of CRISPR/Cas genome editing. FASEB J 31:909.4–909.4

    Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plant 1:1–4

    Google Scholar 

  • Barrangou R (2015) The roles of CRISPR–Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bernard R (1971) Two major genes for time of flowering and maturity in soybeans 1. Crop Sci 11:242–244

    Article  Google Scholar 

  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci 95:10570–10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bo W, Zhaohui Z, Huanhuan Z, Xia W, Binglin L, Lijia Y, Xiangyan H, Deshui Y, Xuelian Z, Chunguo W (2019) Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Ric Sci 26:98–108

    Article  Google Scholar 

  • Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135–136

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232

    Article  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Butt H, Eid A, Ali Z, Atia MA, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzzell M (1980) Adapting chronological stabilization to property risks. Risk Manage (NY) 27:32–34

    CAS  Google Scholar 

  • Buzzell R, Voldeng H (1980) Inheritance of insensitivity to long day length. Soybean Genetics Newsletter 7:13

    Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16(1):176–185

    Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther 16:1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82–e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALEN s in maize. Plant Biotechnol J 13:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Khedher A, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9:1–11

    Article  Google Scholar 

  • Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X (2014) Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 48:494–501

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lee B, Lee AY-F, Modzelewski AJ, He, L. (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Xu Q, Liu Y, Zhang J, Ren D, Wang G, Liu Y (2018) Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Front Plant Sci 9:1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Choulika A, Perrin A, Dujon B, Nicolas J-F (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Article  Google Scholar 

  • Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F and Nogué F (2017). Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods, 121:103–117

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174:2434–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell CR, Sung K, Park J, Krysler AR, Jovel J, Kim SK, Hubbard BP (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 9:1–11

    Article  CAS  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small rna processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • D’astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H, Geijsen N (2015) Efficient intracellular delivery of native proteins. Cell 161:674–690

    Article  PubMed  Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:1–8

    Article  Google Scholar 

  • Donaldson P, Simmonds D (2000) Susceptibility to agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep 19:478–484

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74

    Article  CAS  PubMed  Google Scholar 

  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  CAS  PubMed  Google Scholar 

  • Dugar G, Herbig A, Förstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma CM (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple campylobacter jejuni isolates. PLoS Genet 9:e1003495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekker SC (2008) Zinc finger–based knockout punches for zebrafish genes. Zebrafish 5:121–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17(1):127–139

    Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D-L, Wang Z, Zhang Z, Zheng R, Yang L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiβler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens S-E, Boch J (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89(6):1251–1262

    Google Scholar 

  • Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5:791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratz S (2013) Cummings AM, nguyen Jn, Hamm Dc, Donohue LK, Harrison MM, Wildonger J., O’connor-Giles KM. Genetics 194:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8:477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Gaj T, Barbas CF (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B-F, Yong G, Jun W, Zhang L-J, Jin L-G, Hong H-L, Chang R-Z, Qiu L-J (2015) Co-treatment with surfactant and sonication significantly improves agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean. J Integr Agric 14:1242–1250

    Article  CAS  Google Scholar 

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci 108:21218–21222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilioti Z, Ganopoulos I, Ajith S, Bossis I, Tsaftaris A (2016) A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep 35:2241–2255

    Article  CAS  PubMed  Google Scholar 

  • Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, Mikkelsen JG, Corydon TJ (2017) In vivo knockout of the Vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol Ther-Nucleic Acid 9:89–99

    Article  CAS  Google Scholar 

  • Hoover D (2012) Using DNAWorks in designing oligonucleotides for PCR-based gene synthesis. Springer, Gene Synthesis

    Book  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, Lafayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juillerat A, Pessereau C, Dubois G, Guyot V, Maréchal A, Valton J, Daboussi F, Poirot L, Duclert A, Duchateau P (2015) Optimized tuning of TALEN specificity using non-conventional RVDs. Sci Rep 5:1–7

    Article  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang W, Zhao X, Sun Z, Dong T, Jin C, Tong L, Zhu W, Tao Y, Wu H (2020) Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 27:392–405

    Article  CAS  PubMed  Google Scholar 

  • Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16:856–866

    Article  CAS  PubMed  Google Scholar 

  • Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Karponi G, Zogas N (2019) Gene therapy for beta-thalassemia: updated perspectives. Appl Clin Genet 12:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M (2019) Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 9:1–11

    Article  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, Mccuiston J, Wang W (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J-S (2011) Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Report 5:9–17

    Article  Google Scholar 

  • Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41

    Article  CAS  PubMed  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, Shabtai S, Usadel B, Salts Y, Barg R (2017) Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol J 15:634–647

    Article  CAS  PubMed  Google Scholar 

  • Knorre DG, Vlasov VV (1985) Reactive derivatives of nucleic acids and their components as affinity reagents. Russ Chem Rev 54:836

    Article  Google Scholar 

  • Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Article  Google Scholar 

  • Lalgudi PV, Winslow MM, Winters IP (2018) 21 CRISPR/Cas9-based in vivo models of cancer. Genome editing and engineering: from TALENs, ZFNs and CRISPRs to molecular surgery, 315

    Google Scholar 

  • Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomed Eng 1:889–901

    Article  CAS  Google Scholar 

  • Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-F, Norville JE, Aach J, Mccormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Fan Y-N, Chen Z-Y, Luo Y-L, Wang Y-C, Lian Z-X, Xu C-F, Wang J (2018a) Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res 11:6270–6282

    Article  CAS  Google Scholar 

  • Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L (2018b) Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 66:9042–9051

    Article  CAS  PubMed  Google Scholar 

  • Li C, Nguyen V, Liu J, Fu W, Chen C, Yu K, Cui Y (2019a) Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9. BMC Res Notes 12:1–7

    Article  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L (2019b) CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19:1–13

    Google Scholar 

  • Li Z, Liu ZB, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

    Google Scholar 

  • Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Chuck J, Tan D, Knott GJ, Harrington LB (2019) CRISPR-CasX is an RNA-dominated enzyme active for human genome editing. Nature 566:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H-J, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J (2020) High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32:1397–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long C, Amoasii L, Mireault AA, Mcanally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403

    Article  CAS  PubMed  Google Scholar 

  • Lou D, Wang H, Liang G, Yu, D. (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Yu D (2018) The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 18:1–17

    Article  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu J-K (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci 108:2623–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zheng Y, Xiao K, Wei Y, Zhu Y, Cai Q, Chen L, Xie H, Zhang J (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467

    Article  CAS  PubMed  Google Scholar 

  • Maoy ZH (2013) Application of the CRISPR/Cas system for efficient genome engineering in plants. Mol Plant 6:2008G2011

    Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcblain B, Bernard R (1987) A new gene affecting the time of flowering and maturity in soybeans. J Hered 78:160–162

    Article  Google Scholar 

  • Mcblain B, Bernard R, Cremeens C, Korczak J (1987) A procedure to identify genes affecting maturity using soybean Isoline testers 1. Crop Sci 27:1127–1132

    Article  Google Scholar 

  • Michno J, Wang X, Liu J, Curtin S, Kono T, Stupar R (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Mishra S (2019) Targeted genome editing tools in plants. In: Innovations in life science research. NOVA Science Publisher, New York

    Google Scholar 

  • Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscou M, Bogdanove A (2009) A simple cipher governs TAL effector-DNA recognition. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Mout R, Ray M, Yesilbag Tonga G, Lee Y-W, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11:2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  • Palpant N, Dudzinski D (2013) Zinc finger nucleases: looking toward translation. Gene Ther 20:121–127

    Article  CAS  PubMed  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Develop Biol-Plant 51:1–8

    Article  CAS  Google Scholar 

  • Plessis A, Perrin A, Haber J, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Müller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M (2017) Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 7:1–11

    Article  Google Scholar 

  • Ray JD, Hinson K, Mankono JEB, Malo MF (1995) Genetic control of a long-juvenile trait in soybean. Crop Sci 35:1001–1006

    Article  Google Scholar 

  • Regalado A (2015) CRISPR gene editing to be tested on people by 2017, says Editas. MIT Technology Review

    Google Scholar 

  • Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breed 35:1–15

    Article  CAS  Google Scholar 

  • Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, Khalili K (2016) Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 6:1–11

    Article  Google Scholar 

  • Rothstein RJ (1983) [12] one-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  CAS  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma T, Yamamoto T (2018) Acceleration of cancer science with genome editing and related technologies. Cancer Sci 109:3679–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer S, Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci 76:4951–4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnol J 13:791–800

    Article  CAS  PubMed  Google Scholar 

  • Shelake RM, Pramanik D, Kim J-Y (2019) Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnol Report 13:423–445

    Article  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim J-K (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Roychowdhury R, Singh T, Wang W, Yadav D, Kumar A, Modi A, Rai AC, Ghughe S, Kumar A (2020) Improvement of crop’s stress tolerance by gene editing CRISPR/CAS9 system. In: Sustainable agriculture in the era of climate change. Springer, pp 557–587

    Chapter  Google Scholar 

  • Song M (2017) The CRISPR/Cas9 system: their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog 33:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58:568–574

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:1–10

    Google Scholar 

  • Suresh B, Ramakrishna S, Kim H (2017) Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing. In: Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Springer

    Google Scholar 

  • Swarts DC, Mosterd C, VAN Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7:e35888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  • Tang L-M, Zhou C-L, Guo Z-F, Xiao L, Chüeh AC (2015) Advances in zinc finger nuclease and its applications. Gene and Gene Editing 1:3–15

    Article  Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    Article  CAS  PubMed  Google Scholar 

  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  CAS  PubMed  Google Scholar 

  • Tripathi L, Ntui VO, Tripathi JN (2020) CRISPR/Cas9-based genome editing of banana for disease resistance. Curr Opin Plant Biol 56:118–126

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3: Genes Genom Genet 3:2233–2238

    Article  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K (2016a) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gu Y, Gao H, Qiu L, Chang R, Chen S, He C (2016b) Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol 16:1–13

    Article  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    Article  CAS  PubMed  Google Scholar 

  • Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6:e19722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X (2018) TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol 97:177–185

    Article  CAS  PubMed  Google Scholar 

  • Westra ER, Dowling AJ, Broniewski JM, VAN Houte S (2016) Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst 47:307–331

    Article  Google Scholar 

  • Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775

    Google Scholar 

  • Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:1–14

    Article  Google Scholar 

  • Xu R-F, Li H, Qin R-Y, Li J, Qiu C-H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Google Scholar 

  • Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Liu N, Jiang B, Li M, Wang H, Jiang Z, Pan H, Xia Q, Ma Q, Han T (2017) A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol Plant 10:656–658

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23:R40–R46

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Lang Z, Botella JR, Zhu J-K (2017a) Genome editing—principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci 36:291–309

    Article  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017b) Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018a) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217:1161–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ge X, Luo X, Wang P, Fan Q, Hu G, Xiao J, Li F, Wu J (2018b) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:1–10

    Article  Google Scholar 

  • Zhang C, Srivastava AK, Sadanandom A (2019b) Targeted mutagenesis of the SUMO protease, overly tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv, p 555706

    Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, S., Munir, A., Aslam, H.M.U., Khan, S.H., Ahmad, A. (2022). Genome Editing advances in Soybean Improvement against Biotic and Abiotic Stresses. In: Wani, S.H., Sofi, N.u.R., Bhat, M.A., Lin, F. (eds) Soybean Improvement. Springer, Cham. https://doi.org/10.1007/978-3-031-12232-3_13

Download citation

Publish with us

Policies and ethics