Skip to main content

Remote Sensing and High-Throughput Techniques to Phenotype Crops for Drought Tolerance

  • Chapter
  • First Online:
Soil-Water, Agriculture, and Climate Change

Abstract

Drought is an inevitable consequence of climate change. Therefore, newer crop varieties are required which are resilient to drought stress. Though there are extensive breeding programs for numerous crops, traditional breeding process is slow. Phenotyping crops for physiological and morphological traits could be used as proxies for drought tolerance traits. However, extensive in-situ field data collection is constrained by time and resources. Remote data collection and machine learning techniques for analysis offer a high-throughput phenotyping (HTP) alternative to manual measurements that could help breeding for stress tolerance. In this chapter we would discuss recent advances and future of HTP techniques that could help in faster selection of desired genotypes. These techniques could be further extended to aid in variable rate input application such as irrigation and be a step towards precision agriculture. In this chapter we advocate for the use of newer technologies such as remote sensing, machine learning, and computer vision in plant breeding and agronomic decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad J, Alam D, Haseen MS (2011) Impact of climate change on agriculture and food security in India. Int J Agricult Environ Biotechnol 4(2):129–137

    Google Scholar 

  • Araya A, Prasad P, Ciampitti I, Jha P (2021) Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: a case study for Ethiopian highlands. Field Crop Res 260:108004

    Article  Google Scholar 

  • Araya A, Jha PK, Zambreski Z, Faye A, Ciampitti IA, Min D, ... Prasad PVV (2022) Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Clim Risk Manag 100436

    Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Nageswara Rao R, Wright G, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194(2):113–125

    Article  CAS  Google Scholar 

  • Ayyogari K, Sidhya P, Pandit MK (2014) Impact of climate change on vegetable cultivation-a review. Int J Agricult Environ Biotechnol 7(1):145

    Article  Google Scholar 

  • Balota M, Sarkar S (2020) Transpiration of Peanut in the field under Rainfed production. Paper presented at the American Peanut research and education society annual meeting 2020, Virtual

    Google Scholar 

  • Balota M, Sarkar S, Cazenave A, Kumar N (2021a) Plant characteristics with significant contribution to Peanut yield under extreme weather conditions in Virginia, USA. Paper presented at the ASA, CSSA, SSSA international annual meeting, Salt Lake City, UT

    Google Scholar 

  • Balota M, Sarkar S, Cazenave A, Burow M, Bennett R, Chamberlin K, Wang N, White M, Payton P, Mahan J (2021b) Vegetation indices enable indirect phenotyping of Peanut physiologic and agronomic characteristics. Paper presented at the American Peanut research and education society annual meeting, Virtual

    Google Scholar 

  • Banerjee K, Krishnan P (2020) Normalized Sunlit Shaded Index (NSSI) for characterizing the moisture stress in wheat crop using classified thermal and visible images. Ecol Ind 110:105947

    Article  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research, 5

    Google Scholar 

  • Behmann J, Schmitter P, Steinrücken J, Plümer L (2014) Ordinal classification for efficient plant stress prediction in hyperspectral data. In: International archives of the photogrammetry, remote sensing & spatial information sciences

    Google Scholar 

  • Bell M, Wright G, Harch G (1993) Environmental and agronomic effects on the growth of four peanut cultivars in a sub-tropical environment II. Dry matter partitioning. Exp Agricult 29(4):491–501

    Article  Google Scholar 

  • Bendig J, Bolten A, Bareth G (2013) UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability monitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen. Photogrammetrie-Fernerkundung-Geoinformation 2013(6):551–562

    Google Scholar 

  • Bennett RS, Chamberlin K, Morningweg D, Wang N, Sarkar S, Balota M, Burow M, Chagoya J, Pham H (2021) Response to drought stress in a subset of the U.S. Peanut mini-core evaluated in three states. Peanut Sci 49(1). https://doi.org/10.3146/

  • Bhardwaj ML (2012) Effect of climate change on vegetable production in India. In: Vegetable production under changing climate scenario, pp 1–12

    Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112(2–3):119–123

    Article  Google Scholar 

  • Blum A (2011) Plant breeding for water-limited environments. Springer

    Google Scholar 

  • Boonekamp PM (2012) Are plant diseases too much ignored in the climate change debate? Eur J Plant Pathol 133(1):291–294

    Article  Google Scholar 

  • Braga P, Crusiol LGT, Nanni MR, Caranhato ALH, Fuhrmann MB, Nepomuceno AL, ... Mertz-Henning LM (2021) Vegetation indices and NIR-SWIR spectral bands as a phenotyping tool for water status determination in soybean. Precis Agricult 22(1):249–266

    Google Scholar 

  • Branch W, Brenneman T, Hookstra G (2014) Field test results versus marker assisted selection for root-knot nematode resistance in peanut. Peanut Sci 41(2):85–89

    Article  Google Scholar 

  • Burow M, Balota M, Sarkar S, Bennett R, Chamberlin K, Wang N, White M, Payton P, Mahan J, Dobreva I (2021) Field measurements, yield, and grade of the U.S. Minicore under water deficit stress. Paper presented at the American Peanut Research and Education Society Annual Meeting 2021, Virtual

    Google Scholar 

  • Casadesús J, Villegas D (2014) Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J Integr Plant Biol 56(1):7–14

    Article  PubMed  Google Scholar 

  • Casadesús J, Kaya Y, Bort J, Nachit MM, Araus JL, Amor S, ... Villegas D (2007) Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water‐limited environments. Ann Appl Biol 150(2):227–236

    Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochimica et Biophysica Acta (BBA)-Gene Struct Exp 1519(3):153–166

    Google Scholar 

  • Chaerle L, De Boever F, Montagu MV, Straeten DVD (2001) Thermographic visualization of cell death in tobacco and Arabidopsis. Plant Cell Environ 24(1):15–25

    Article  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Chapu I, Kalule DO, Okello RC, Odong TL, Sarkar S, Balota M (2022) Re-designing late leaf spot and groundnut rosette disease phenotyping in groundnut breeding in Uganda. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.912332

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chung S-Y, Vercellotti JR, Sanders TH (1997) Increase of glycolytic enzymes in peanuts during peanut maturation and curing: evidence of anaerobic metabolism. J Agric Food Chem 45(12):4516–4521

    Article  CAS  Google Scholar 

  • Collino D, Dardanelli J, Sereno R, Racca R (2001) Physiological responses of argentine peanut varieties to water stress.: Light interception, radiation use efficiency and partitioning of assimilates. Field Crops Res 70(3):177–184

    Google Scholar 

  • Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Condorelli GE, Maccaferri M, Newcomb M, Andrade-Sanchez P, White JW, French AN, Sciara G, Ward R, Tuberosa R (2018) Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Sci 9(893). https://doi.org/10.3389/fpls.2018.00893

  • Costa JM, Tejero IFG, Zuazo VHD, da Lima RSN, Chaves MM, Patto MCV (2015) Thermal imaging to phenotype traditional maize landraces for drought tolerance. Comunicata Scientiae 6(3):334–343

    Article  Google Scholar 

  • Demir N, Sönmez NK, Akar T, Ünal S (2018) Automated measurement of plant height of wheat genotypes using a DSM derived from UAV imagery. Paper presented at the multidisciplinary digital publishing institute proceedings

    Google Scholar 

  • De Swaef T, Maes WH, Aper J, Baert J, Cougnon M, Reheul D, Steppe K, Roldán-Ruiz I, Lootens P (2021) Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens 13(1):147. https://www.mdpi.com/2072-4292/13/1/147

  • Devries JD, Bennett J, Boote K, Albrecht S, Maliro C (1989a) Nitrogen accumulation and partitioning by three grain legumes in response to soil water deficits. Field Crop Res 22(1):33–44

    Article  Google Scholar 

  • Devries J, Bennett J, Albrecht S, Boote K (1989b) Water relations, nitrogenase activity and root development of three grain legumes in response to soil water deficits. Field Crop Res 21(3–4):215–226

    Article  Google Scholar 

  • Eeswaran R, Nejadhashemi AP, Kpodo J, Curtis ZK, Adhikari U, Liao H, Li S-G, Hernandez-Suarez JS, Alves FC, Raschke A (2021) Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agr Ecosyst Environ 320:107612

    Article  Google Scholar 

  • El Bilali H, Callenius C, Strassner C, Probst L (2019) Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8(2):e00154

    Article  Google Scholar 

  • Elsayed S, Rischbeck P, Schmidhalter U (2015) Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crop Res 177:148–160

    Article  Google Scholar 

  • Falk KG, Jubery TZ, Mirnezami SV, Parmley KA, Sarkar S, Singh A, ... Singh AK (2020) Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods 16(1):1–19

    Google Scholar 

  • Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Proc Land 38(4):421–430

    Google Scholar 

  • Freeman KW, Girma K, Arnall DB, Mullen RW, Martin KL, Teal RK, Raun WR (2007) By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99(2):530–536

    Article  CAS  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop Res 40(2):67–86

    Article  Google Scholar 

  • Furukawa Y, Ponce J (2010) Dense 3d motion capture from synchronized video streams. In: Image and geometry processing for 3-D cinematography. Springer, pp 193–211

    Google Scholar 

  • Ghosal S, Zheng B, Chapman SC, Potgieter AB, Jordan DR, Wang X, Singh AK, Singh A, Hirafuji M, Ninomiya S (2019) A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics

    Google Scholar 

  • Gitelson AA, Viña A, Arkebauer TJ, Rundquist DC, Keydan G, Leavitt B (2003) Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys Res Lett 30(5)

    Google Scholar 

  • Han X, Thomasson JA, Bagnall C, Pugh NA, Horne DW, Rooney WL, Malambo L, Chang A, Jung J, Cope DA (2018) Calibrated plant height estimates with structure from motion from fixed-wing UAV images. Paper presented at the autonomous air and ground sensing systems for agricultural optimization and phenotyping III

    Google Scholar 

  • Hasan MM, Chopin JP, Laga H, Miklavcic SJ (2018) Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14(1):1–13

    Article  Google Scholar 

  • Hein NT, Ciampitti IA, Jagadish SVK (2021) Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress. J Exp Bot 72(14):5102–5116. https://doi.org/10.1093/jxb/erab021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry A, Gowda VR, Torres RO, McNally KL, Serraj R (2011) Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crop Res 120(2):205–214

    Article  Google Scholar 

  • Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ (2016) High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens 8(12):1031

    Article  ADS  Google Scholar 

  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

    Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ Jr (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138

    Article  ADS  Google Scholar 

  • James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J Geophys Res: Earth Surf 117(F3):n/a–n/a. https://doi.org/10.1029/2011jf002289

  • Jha PK (2019) Agronomic management of corn using seasonal climate predictions, remote sensing, and crop simulation models. Michigan State University

    Google Scholar 

  • Jha PK, Kumar SN, Ines AV (2018) Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: field experiment and modelling approach. Field Crop Res 219:76–86

    Article  Google Scholar 

  • Jha PK, Ines AV, Singh MP (2021) A multiple and ensembling approach for calibration and evaluation of genetic coefficients of CERES-maize to simulate maize phenology and yield in Michigan. Environ Model Softw 135:104901

    Article  Google Scholar 

  • Jha PK, Ines AV, Han E, Cruz R, Prasad PV (2022) A comparison of multiple calibration and ensembling methods for estimating genetic coefficients of CERES-Rice to simulate phenology and yields. Field Crop Res 284:108560

    Article  Google Scholar 

  • Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric for Meteorol 95(3):139–149

    Article  ADS  Google Scholar 

  • Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press

    Google Scholar 

  • Julia C, Dingkuhn M (2013) Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate. Eur J Agron 49:50–60

    Article  Google Scholar 

  • Kanning M, Kühling I, Trautz D, Jarmer T (2018) High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens 10(12):2000

    Article  ADS  Google Scholar 

  • Kar S, Purbey VK, Suradhaniwar S, Korbu LB, Kholová J, Durbha SS, ... Vadez V (2021) An ensemble machine learning approach for determination of the optimum sampling time for evapotranspiration assessment from high-throughput phenotyping data. Comput Electron Agricult 182:105992

    Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci 104(39):15270–15275

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kefauver SC, El-Haddad G, Vergara-Diaz O, Araus JL (2015) RGB picture vegetation indexes for high-throughput phenotyping platforms (HTPPs). In: Remote sensing for agriculture, ecosystems, and hydrology XVII, vol 9637. International Society for Optics and Photonics, p 96370J

    Google Scholar 

  • Kefauver SC, Vicente R, Vergara-Díaz O, Fernandez-Gallego JA, Kerfal S, Lopez A, ... Araus JL (2017) Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front Plant Sci 8:1733

    Google Scholar 

  • Khan Z, Rahimi-Eichi V, Haefele S, Garnett T, Miklavcic SJ (2018) Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 14(1):1–11

    Google Scholar 

  • Kim J, Kim K-S, Kim Y, Chung YS (2020) A short review: comparisons of high-throughput phenotyping methods for detecting drought tolerance. Scientia Agricola 78

    Google Scholar 

  • Kiniry J, Simpson C, Schubert A, Reed J (2005) Peanut leaf area index, light interception, radiation use efficiency, and harvest index at three sites in Texas. Field Crop Res 91(2–3):297–306

    Article  Google Scholar 

  • Kipp S, Mistele B, Schmidhalter U (2013) Identification of stay-green and early senescence phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein concentration using high-throughput phenotyping techniques. Funct Plant Biol 41(3):227–235

    Article  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Ladoni M, Bahrami HA, Alavipanah SK, Norouzi AA (2010) Estimating soil organic carbon from soil reflectance: a review. Precision Agric 11(1):82–99

    Article  Google Scholar 

  • Lazarević B, Šatović Z, Nimac A, Vidak M, Gunjača J, Politeo O, Carović-Stanko K (2021) Application of phenotyping methods in detection of drought and salinity stress in basil (Ocimum basilicum L.). Front Plant Sci 12:174

    Google Scholar 

  • Lee K, Seong J, Han Y, Lee WH (2020) Evaluation of applicability of various color space techniques of UAV images for evaluating cool roof performance. Energies 13(16):4213

    Article  Google Scholar 

  • Lin H, Chen Y, Zhang H, Fu P, Fan Z (2017) Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct Ecol 31(12):2202–2211

    Article  Google Scholar 

  • Lottes P, Khanna R, Pfeifer J, Siegwart R, Stachniss C (2017) UAV-based crop and weed classification for smart farming. Paper presented at the 2017 IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Luis JM, Ozias-Akins P, Holbrook CC, Kemerait RC Jr, Snider JL, Liakos V (2016) Phenotyping peanut genotypes for drought tolerance. Peanut Sci 43(1):36–48

    Article  Google Scholar 

  • Ma L, Gardner F, Selamat A (1992) Estimation of leaf area from leaf and total mass measurements in peanut. Crop Sci 32(2):467–471

    Article  Google Scholar 

  • Maksimovic I, Ilin Z (2012) Effects of salinity on vegetable growth and nutrients uptake. Irrigat Syst Pract Challeng Environ 9

    Google Scholar 

  • Mathews AJ, Jensen JL (2013) Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sens 5(5):2164–2183

    Article  ADS  Google Scholar 

  • Micheletti N, Chandler JH, Lane SN (2015a) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Proc Land 40(4):473–486

    Article  ADS  Google Scholar 

  • Micheletti N, Lane SN, Chandler JH (2015b) Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. Photogram Rec 30(150):143–165

    Article  Google Scholar 

  • Minaxi RP, Acharya KO, Nawale S (2011) Impact of climate change on food security. Int J Agricult Environ Biotechnol 4(2):125–127

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  • Nigam S, Aruna R (2007) Improving breeding efficiency for early maturity in peanut. Plant Breeding Rev 30:295–322

    Google Scholar 

  • Nigam S, Chandra S, Sridevi KR, Bhukta M, Reddy A, Rachaputi NR, Wright G, Reddy P, Deshmukh M, Mathur R (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146(4):433–439

    Article  Google Scholar 

  • Nuruddin MM (2001) Effects of water stress on tomato at different growth stages

    Google Scholar 

  • Nutter FW Jr, Littrell RH (1996) Relationships between defoliation, canopy reflectance and pod yield in the peanut-late leafspot pathosystem. Crop Prot 15(2):135–142

    Article  Google Scholar 

  • Oakes J, Balota M, Thomason WE, Cazenave AB, Sarkar S, Sadeghpour A (2019) Using unmanned aerial vehicles to improve n management in winter wheat. Paper presented at the ASA, CSSA, SSSA international annual meeting 2019, San Antonio, TX

    Google Scholar 

  • Oakes J, Balota M, Thomason W, Cazenave A, Sarkar S (2020) Using UAVs to improve nitrogen management of winter wheat. In: Annual wheat newsletter, vol 66. Wheat Genetic and Genomic Resources Center at Kansas State University, p 103

    Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Herrera W, Villegas A, Pendleton J (1984) Drought response of grain legumes under irrigation gradient: III. Plant growth 1. Agron J 76(4):557–560

    Google Scholar 

  • Parajuli R, Thoma G, Matlock MD (2019) Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: a review. Sci Total Environ 650:2863–2879

    Article  CAS  PubMed  ADS  Google Scholar 

  • Patil S, Kumar K, Jakhar DS, Rai A, Borle U, Singh P (2016) Studies on variability, heritability, genetic advance and correlation in maize (Zea mays L.). Int J Agricult Environ Biotechnol 9(6):1103–1108

    Google Scholar 

  • Pineda M, Baron M, Perez-Bueno ML (2020) Thermal imaging for plant stress detection and phenotyping. Remote Sens 13(1):68

    Article  ADS  Google Scholar 

  • Prasad BVG, Chakravorty S (2015) Effects of climate change on vegetable cultivation-a review. Nat Environ Pollut Technol 14(4):923

    Google Scholar 

  • Prashar A, Jones HG (2014) Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4(3):397–417

    Article  Google Scholar 

  • Rai A, Sharma V, Heitholt J (2020) Dry bean [phaseolus vulgaris L.] growth and yield response to variable irrigation in the arid to semi-arid climate. Sustainability 12(9):3851

    Google Scholar 

  • Rakshit A, Sarkar NC, Pathak H, Maiti RK, Makar AK, Singh PL (2009) Agriculture: a potential source of greenhouse gases and their mitigation strategies. In: IOP conference series. earth and environmental science, vol 6, no 24. IOP Publishing

    Google Scholar 

  • Raza S-E-A, Smith HK, Clarkson GJ, Taylor G, Thompson AJ, Clarkson J, Rajpoot NM (2014) Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PloS One 9(6):e97612

    Google Scholar 

  • Reddy T, Reddy V, Anbumozhi V (2003) Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regulat 41(1):75–88

    Google Scholar 

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogram Rec 29(146):144–166

    Article  Google Scholar 

  • Richards G, Lénia M, Mein K, Marques L, Mein K (2015) Summary for policymakers. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013—the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (Climate Change 2013—the physical science basis). Cambridge University Press/UNEP. https://doi.org/10.1017/CBO9781107415324.004

  • Romano G, Zia S, Spreer W, Sanchez C, Cairns J, Araus JL, Müller J (2011) Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput Electron Agric 79(1):67–74

    Article  Google Scholar 

  • Rose JC, Paulus S, Kuhlmann H (2015) Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors 15(5):9651–9665

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Rothermel M, Wenzel K, Fritsch D, Haala N (2012) SURE: photogrammetric surface reconstruction from imagery. Paper presented at the proceedings LC3D workshop, Berlin

    Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, ... Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes Genomes Genet 6(9):2799–2808

    Google Scholar 

  • Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghpour A, Oakes J, Sarkar S, Balota M (2017a) Precise Nitrogen management of biomass Sorghum using vegetation indices. Paper presented at the ASA, CSSA and SSSA international annual meetings 2017, Tampa, FL

    Google Scholar 

  • Sadeghpour A, Oakes J, Sarkar S, Pitman R, Balota M (2017b) High throughput phenotyping of biomass sorghum using ground and aerial imaging. Paper presented at the ASA, CSSA and SSSA international annual meetings 2017, Tampa, FL

    Google Scholar 

  • Sadeghpour A, Oakes J, Sarkar S, Balota M (2018) Seeding rate and harvesting time effect on biomass Sorghum production in Virginia. Paper presented at the ASA, CSSA and CSA international annual meetings 2018, Baltimore, MD

    Google Scholar 

  • Sankaran S, Quirós JJ, Miklas PN (2019) Unmanned aerial system and satellite-based high resolution imagery for high-throughput phenotyping in dry bean. Comput Electron Agric 165:104965

    Article  Google Scholar 

  • Saravi B, Nejadhashemi AP, Jha P, Tang B (2021) Reducing deep learning network structure through variable reduction methods in crop modeling. Artif Intell Agricult 5:196–207

    Google Scholar 

  • Sarkar S (2020) Development of high-throughput phenotyping methods and evaluation of morphological and physiological characteristics of peanut in a sub-humid environment. Virginia Polytechnic Institute and State University

    Google Scholar 

  • Sarkar S (2021) High-throughput estimation of soil nutrient and residue cover: a step towards precision agriculture. In: Soil science: fundamentals to recent advances. Springer, Singapore, pp 581–596

    Google Scholar 

  • Sarkar S, Jha PK (2020) Is precision agriculture worth it? Yes, may be. J Biotechnol Crop Sci 9(14):4–9

    Google Scholar 

  • Sarkar S, Cazenave AB, Oakes J, McCall D, Thomason W, Abbot L, Balota M (2020) High-throughput measurement of peanut canopy height using digital surface models. Plant Phenome J 3(1):e20003

    Article  Google Scholar 

  • Sarkar S, Oakes J, Balota M (2018) High-throughput phenotyping of Peanut and biomass Sorghum using proximal sensing and aerial imaging for the mid-atlantic U.S. Paper presented at the 2018 GIS and remote sensing research symposium

    Google Scholar 

  • Sarkar S, Oakes J, Balota M (2019) Use of proximal and remote sensing technologies for high-throughput phenotyping in peanuts. Paper presented at the advanced environmental, chemical, and biological sensing technologies XV

    Google Scholar 

  • Sarkar S, Cazenave AB, Oakes J, McCall D, Thomason W, Abbot L, Balota M (2021a) Aerial high-throughput phenotyping of peanut leaf area index and lateral growth. Sci Rep 11(1):1–17.

    Google Scholar 

  • Sarkar S, Ramsey AF, Cazenave A-B, Balota M (2021b) Peanut leaf wilting estimation from RGB color indices and logistic models. Front Plant Sci 12:713

    Article  Google Scholar 

  • Sarkar S, Shekoofa A, McClure A, Gillman JD (2022a) Phenotyping and Quantitative Trait Locus analysis for the limited transpiration trait in an upper-mid south soybean recombinant inbred line population (‘Jackson’בKS4895’): high throughput aquaporin inhibitor screening. Front Plant Sci 3175

    Google Scholar 

  • Sarkar S, Wedegaertner K, Shekoofa A (2022b) Using aerial imagery to optimize the efficiency of PGR application in cotton. Paper presented at the Beltwide cotton conference 2022b, San Antonio, TX

    Google Scholar 

  • Schanda J (2007) Colorimetry: understanding the CIE system. Wiley

    Google Scholar 

  • Serraj R, Sinclair T (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    Article  PubMed  Google Scholar 

  • Shekoofa A, Sheldon K, Sarkar S, Raper TB (2022) Variety selection: a valuable tool in the management of water relations in cotton production. Paper presented at the Beltwide cotton conference 2022, San Antonio, TX

    Google Scholar 

  • Simko I, Jimenez-Berni JA, Sirault XR (2017) Phenomic approaches and tools for phytopathologists. Phytopathology 107(1):6–17

    Article  CAS  PubMed  Google Scholar 

  • Singh JP, Lal SS (2010) Climate change and potato production in India. ISPRS Archives XXXVIII-8. In: W3 workshop proceedings: impact of climate change on agriculture, pp 115–117

    Google Scholar 

  • Snavely N, Seitz SM, Szeliski R (2008) Skeletal graphs for efficient structure from motion. Paper presented at the 2008 IEEE conference on computer vision and pattern recognition

    Google Scholar 

  • Stebbins GL Jr (1952) Aridity as a stimulus to plant evolution. Am Nat 86(826):33–44

    Article  Google Scholar 

  • Su W, Zhang M, Bian D, Liu Z, Huang J, Wang W, ... Guo H (2019) Phenotyping of corn plants using unmanned aerial vehicle (UAV) images. Remote Sens 11(17):2021

    Google Scholar 

  • Sung C, Balota M, Sarkar S, Bennett R, Chamberlin K, Wang N, Payton P, Mahan J, Chagoya J, Burow M (2021) Genome-wide association study on Peanut water deficit stress tolerance using the U.S. minicore to develop improvement for breeding. Paper presented at the American Peanut research and education society annual meeting 2021, Virtual

    Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates Incorporated

    Google Scholar 

  • Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tian M, Ban S, Chang Q, You M, Luo D, Wang L, Wang S (2016) Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. Trans Chin Soc Agricult Eng 32(21):102–108

    Google Scholar 

  • Travlos I, Mikroulis A, Anastasiou E, Fountas S, Bilalis D, Tsiropoulos Z, Balafoutis A (2017) The use of RGB cameras in defining crop development in legumes. Adv Anim Biosci 8(2):224–228

    Article  Google Scholar 

  • Trussell HJ, Saber E, Vrhel M (2005) Color image processing: Basics and special issue overview. IEEE Signal Process Mag 22(1)

    Google Scholar 

  • Venkateswarlu B, Maheswari M, Saharan N (1989) Effects of water deficit on N2 (C2H2) fixation in cowpea and groundnut. Plant Soil 114(1):69–74

    Article  CAS  Google Scholar 

  • Vergara-Diaz O, Kefauver SC, Elazab A, Nieto-Taladriz MT, Araus JL (2015) Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop J 3(3):200–210

    Article  Google Scholar 

  • Vergara-Díaz O, Zaman-Allah MA, Masuka B, Hornero A, Zarco-Tejada P, Prasanna BM, … Araus JL (2016) A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization.Front Plant Sci 7:666

    Google Scholar 

  • Vollmann J, Walter H, Sato T, Schweiger P (2011) Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean. Comput Electron Agric 75(1):190–195

    Article  Google Scholar 

  • Wang X, Singh D, Marla S, Morris G, Poland J (2018) Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Badenhorst P, Phelan A, Pembleton L, Shi F, Cogan N, … Smith K (2019a) Using sensors and unmanned aircraft systems for high-throughput phenotyping of biomass in perennial ryegrass breeding trials. Front Plant Sci 1381

    Google Scholar 

  • Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J (2019b) High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. GigaScience 8(11):giz120

    Google Scholar 

  • Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, Yano K, Tokunaga T, Fujiwara T, Tsutsumi N, Iwata H (2017) High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front Plant Sci 8(421). https://doi.org/10.3389/fpls.2017.00421

  • Welch E, Moorhead R, Owens JK (1991, April) Image processing using the HSI color space. In: IEEE proceedings of the SOUTHEASTCON’91. IEEE, pp 722–725

    Google Scholar 

  • Wenting H, Yu S, Tengfei X, Xiangwei C, Ooi SK (2014) Detecting maize leaf water status by using digital RGB images. Int J Agricult Biol Eng 7(1):45–53

    Google Scholar 

  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  ADS  Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80(5):1106–1122

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q (2017) Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 13(1):1–15

    Article  Google Scholar 

  • Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, … Prasad PV (2022) Impacts, tolerance, adaptation, and mitigation of heat stress on wheat under changing climates. Int J Mol Sci 23(5):2838

    Google Scholar 

  • Yam KL, Papadakis SE (2004) A simple digital imaging method for measuring and analyzing color of food surfaces. J Food Eng 61(1):137–142

    Article  Google Scholar 

  • Yin X, McClure MA, Jaja N, Tyler DD, Hayes RM (2011) In-season prediction of corn yield using plant height under major production systems. Agron J 103(3):923–929

    Article  Google Scholar 

  • Yuan H, Yang G, Li C, Wang Y, Liu J, Yu H, Feng H, Xu B, Zhao X, Yang X (2017) Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sens 9(4):309

    Article  ADS  Google Scholar 

  • Yuan W, Li J, Bhatta M, Shi Y, Baenziger PS, Ge Y (2018) Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors 18(11):3731

    Article  PubMed Central  ADS  Google Scholar 

  • Zakaluk R, Ranjan R (2008) Predicting the leaf water potential of potato plants using RGB reflectance. Canadian Biosyst Eng 50

    Google Scholar 

  • Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J, Peng X (2019) Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front Plant Sci 10:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhou J, Ye H, Ali ML, Nguyen HT, Chen P (2020) Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Comput Electron Agric 175:105576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayantan Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Rai, A., Jha, P.K. (2022). Remote Sensing and High-Throughput Techniques to Phenotype Crops for Drought Tolerance. In: Dubey, S.K., Jha, P.K., Gupta, P.K., Nanda, A., Gupta, V. (eds) Soil-Water, Agriculture, and Climate Change. Water Science and Technology Library, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-031-12059-6_7

Download citation

Publish with us

Policies and ethics