Skip to main content

Disciplinary Implications of a System Architecting Approach to Collaborative Aircraft Design

  • Chapter
  • First Online:
Advances in Computational Methods and Technologies in Aeronautics and Industry

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 57))

  • 327 Accesses

Abstract

In the face of growing public awareness of environmental issues such as climate change, the pressure to provide efficient and ecological new air transport solutions is higher than ever on the aviation community. To this aim, unconventional aircraft configurations, which are radically different from the established tube-and-wing architecture, may hold a lot of potential. However, original equipment manufacturers today usually shy away from such configurations due to the significantly increased uncertainty and risk connected to such drastic design changes. In order to reduce the risk and increase knowledge about a new configuration, the application of physics-based analyses on a virtual aircraft can add significant value, when applied in the early stages of the design process by bringing new technologies to higher technology readiness levels quickly. Due to the highly multidisciplinary nature of the aircraft design task, the success of this approach largely depends not only on the well-organized handling of the available product data at any point in the design process but also the smart sequencing of the disciplinary contributions based on their mutual dependencies. In this paper, a methodology for an integrated and collaborative approach to preliminary aircraft design is presented. Furthermore, the requirements for a disciplinary analysis and design tool to contribute to an integrated multidisciplinary design process are highlighted. Three examples are given, assuming the perspective of a structural designer to demonstrate the initial investment necessary in order to integrate a disciplinary tool into a multidisciplinary environment as well as the potential benefits of being able to perform the analysis within a larger context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Salem K et al (2018) PARSIFAL project: a breakthrough innovation in air transport. Aerotec Missili Spaz 97(1):40–46. https://doi.org/10.1007/BF03404764

  2. Alder Marko et al (2020) Recent advances in establishing a common language for aircraft design with CPACS. In: Aerospace Europe conference—AEC2020. France, Bordeaux

    Google Scholar 

  3. Bachmann A et al (2009) A dynamic data integration approach to build scientific workflow systems. In: Workshops at the grid and pervasive computing conference. IEEE. https://doi.org/10.1109/GPC.2009.15

  4. Beckert A, Wendland H (2001) Multivariate interpolation for fluidstructure- interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134. https://doi.org/10.1016/s1270-9638(00)01087-7

  5. Benad J (2015) The flying V—a new aircraft configuration for commercial passenger transport. In: Deutscher Luft- und Raumfahrtkongress 2015, Rostock. Deutsche Gesellschaft für Luft- und Raumfahrt—Lilienthal-Oberth e.V. https://doi.org/10.25967/370094

  6. Bundesministerium fürWirtschaft und Energie (BMWi). Die Luftfahrtstrategie der Bundesregierung (2014)

    Google Scholar 

  7. Carini M, Méheut M, Sanders L (2019) Aerodynamic and acoustic analysis of a preliminary prandtlplane configuration within the framework of the PARSIFAL project. In: AIDAA 2019, Rome, Italy

    Google Scholar 

  8. Ciampa PD, Nagel B (2020) AGILE paradigm: the next generation collaborative MDO for the development of aeronautical systems. Prog Aerosp Sci 119:100643. https://doi.org/10.1016/j.paerosci.2020.100643

  9. Ciampa PD et al (2019) Streamlining cross-organizational aircraft development: results from the AGILE project. In: AIAA Aviation 2019 Forum. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2019-3454

  10. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR). Programm und Strategie: Luftfahrtforschung im DLR (2020) https://www.dlr.de/content/de/artikel/luftfahrt/luftfahrtforschung/programmund-strategie-luftfahrtforschung-im-dlr.html

  11. DLR Institute for Software Technology (2021) DLR Institute for Software Technology—GitHub. https://github.com/DLR-SC

  12. DLR Institute for System Architectures in Aeronautics (2018) CPACS Website. http://cpacs.de

  13. DLR Institute for System Architectures in Aeronautics (2021) DLR-SL—GitHub. https://github.com/DLR-SL

  14. Dorbath F, Nagel B, Gollnick V (2013) Extended physics-based wing mass estimation in early design stages applying automated model generation. Proc Inst Mech Eng, Part G: J Aerosp 228(7):1010–1019. https://doi.org/10.1177/0954410013482657

  15. Doyle S (2021) pyNastran—a Python-based interface tool for Nastran’s file formats. https://github.com/SteveDoyle2/pyNastran

  16. Economon TD et al (2016) SU2: an open-source suite for multiphysics simulation and design. AIAA J 54(3):828–846. https://doi.org/10.2514/1.j053813

  17. Fuchte JC (2014) Enhancement of aircraft cabin design guidelines with special consideration of aircraft turnaround and short range operations. Technical report Technische Universität Hamburg-Harburg. https://elib.dlr.de/89599/

  18. van Gent I (2019) Agile MDAO systems: a graph-based methodology to enhance collaborative multidisciplinary design. Ph.D. thesis. https://doi.org/10.4233/uuid:c42b30ba-2ba7-4fff-bf1c-f81f85e890af

  19. Görtz S et al (2018) DLR-Projekt VicToria—virtual aircraft technology integration platform. In: Deutscher Luft- und Raumfahrtkongress 2018. https://elib.dlr.de/121695/

  20. Gray JS et al (2019) OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization. Struct Multidiscip Optim 59(4):1075–1104. https://doi.org/10.1007/s00158-019-02211-z

  21. Gundlach JF et al (2000) Conceptual design studies of a strut-braced wing transonic transport. J Aircr 37(6):976–983. https://doi.org/10.2514/2.2724

  22. Helmholtz-Gemeinschaft (2020) Das programm luftfahrt. https://www.helmholtz.de/forschung/luftfahrt_raumfahrt_und_verkehr/luftfahrt/

  23. Izzi MI et al (2020) A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures. Compos Struct 237:111908. https://doi.org/10.1016/j.compstruct.2020.111908

  24. Kroll N et al (2015) DLR project digital-X: towards virtual aircraft design and flight testing based on high-fidelity methods. CEAS Aeronaut J 7(1):3–27. https://doi.org/10.1007/s13272-015-0179-7

  25. Lambe AB, Martins JR (2012) Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct Multidiscip Optim 46(2):273–284. https://doi.org/10.1007/s00158-012-0763-y

  26. Liersch CM, Hepperle M (2011) A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronaut J 2(1–4):57–68. https://doi.org/10.1007/s13272-011-0024-6

  27. Maierl R et al (2018) Aero-structural optimization of a MALE configuration in the AGILE MDO framework. In: 31st congress of the international council the aeronautical sciences (ICAS), Belo Horizonte, Brazil. https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0675_paper.pdf

  28. Maierl R et al (2015) Automatic generation of aeroelastic simulation models combined with a knowledge based mass prediction. In: 5th CEAS air & space conference, Delft, The Netherlands

    Google Scholar 

  29. Martins JR, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9):2049–2075. https://doi.org/10.2514/1.j051895

  30. Nagel B et al (2012) Communication in aircraft design: can we establish a common language? In: 28th congress of the international council of the aeronautical sciences (ICAS), Brisbane, Australia

    Google Scholar 

  31. Panettieri E et al (2020) Multi-scale least-weight design of a wing-box through a global/local modelling approach. J Optim Theory Appl 187(3):776–799. https://doi.org/10.1007/s10957-020-01693-y

  32. Pfeiffer T et al (2017) Ergebnisse des Flugzeugvorentwurfprojekts “FrEACs” (Future Enhanced Aircraft Configurations). In: Deutscher Luft-und Raumfahrtkongress

    Google Scholar 

  33. Picchi Scardaoni M, Binante V, Cipolla V (2017) WAGNER: a new code for parametrical structural study of fuselages of civil transport aircraft. Aerotec Missili Spaz 96(3). ISSN: 03657442. https://doi.org/10.19249/ams.v96i3.311

  34. Reimer F et al (2020) Applikation des design thinking ansatzes auf den Flugzeugkabinen Entwurfsprozess. de. In: Deutsche Gesellschaft für Luftund Raumfahrt—Lilienthal-Oberth e.V. https://doi.org/10.25967/530203

  35. Risueño AP et al (2020) MDAx: agile generation of collaborative MDAO workflows for complex systems. https://doi.org/10.2514/6.2020-3133

  36. Scherer J, Kohlgrüber D (2016) Fuselage structures within the CPACS data format. Aircr Eng Aerosp Technol 88(2):294–302. https://doi.org/10.1108/aeat-02-2015-0056

  37. Schmollgruber P (2018) Enhancement of the conceptual aircraft design process through certification constraints management and full mission simulations. Ph.D. thesis. Institut Supérieur de l’Aéronautique et de l’Espace (ISAE) https://hal.archives-ouvertes.fr/tel-02146110

  38. Schuhmacher G et al (2012) Multidisciplinary Airframe Design Optimization. In: 28th international congress of the aeronautical sciences, Brisbane

    Google Scholar 

  39. Seider D et al (2012) Open source software framework for applications in aeronautics and space. In: IEEE aerospace conference, big sky, Montana, USA

    Google Scholar 

  40. Siggel M et al (2019) TiGL: an open source computational geometry library for parametric aircraft design. Math Comput Sci 13(3):367–389. https://doi.org/10.1007/s11786-019-00401-y

  41. Tomac M (2014) Towards automated CFD for engineering methods in aircraft design. Ph.D. thesis. KTH Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  42. Unity Technologies (2020) Unity real-time development platform | 3D, 2D VR & AR engine. Accessed 12 July 2020. https://unity.com/

  43. Walther JN, Ciampa PD (2018) Knowledge-based automatic airframe design using CPACS. Transp Res Procedia 29:427–439. https://doi.org/10.1016/j.trpro.2018.02.038

  44. Walther JN, Petsch M, Kohlgrüber D (2017) Modeling of CPACS based fuselage structures using Python. Aircr Eng Aerosp Technol https://doi.org/10.1108/AEAT-01-2017-0028

  45. Walther JN et al (2020) Automatisierte Kabinenvirtualisierung auf Basis von Flugzeugvorentwurfsdaten. In: Deutscher Luft- und Raumfahrtkongress 2020

    Google Scholar 

  46. Walther JN et al (2019) Integration aspects of the collaborative aero-structural design of an unmanned aerial vehicle. CEAS Aeronaut J 11(1):217–227. https://doi.org/10.1007/s13272-019-00412-2

  47. Wöhler S et al (2020) Preliminary aircraft design within a multidisciplinary and multifidelity design environment. In: Aerospace Europe conference 2020. https://elib.dlr.de/135245/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-N. Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walther, JN., Ciampa, P.D., Nagel, B. (2022). Disciplinary Implications of a System Architecting Approach to Collaborative Aircraft Design. In: Knoerzer, D., Periaux, J., Tuovinen, T. (eds) Advances in Computational Methods and Technologies in Aeronautics and Industry. Computational Methods in Applied Sciences, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-031-12019-0_12

Download citation

Publish with us

Policies and ethics