Skip to main content

Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors

  • Chapter
  • First Online:
Nuclear Receptors in Human Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1390))

Abstract

This chapter focuses on the development of drugs targeting the N-terminal domain of nuclear hormone receptors, using progress with the androgen receptor as an example. Historically, development of therapies targeting nuclear hormone receptors has focused on the folded C-terminal ligand-binding domain. Therapies were traditionally not developed to target the intrinsically disordered N-terminal domain as it was considered “undruggable”. Recent developments have now shown it is possible to direct therapies to the N-terminal domain. This chapter will provide an introduction of the structure and function of the domains of nuclear hormone receptors, followed by a discussion of the rationale supporting the development of N-terminal domain inhibitors. Chemistry and mechanisms of action of small molecule inhibitors will be described with emphasis on N-terminal domain inhibitors developed to the androgen receptor including those in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aceto N, Bardia A, Wittner BS, Donaldson MC, O’Keefe R, Engstrom A, Bersani F, Zheng Y, Comaills V, Niederhoffer K, Zhu H, Mackenzie O, Shioda T, Sgroi D, Kapur R, Ting DT, Moy B, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2018) AR expression in breast cancer CTCs associates with bone metastases. Mol Cancer Res 16:720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersen RJ (2017) Sponging off nature for new drug leads. Biochem Pharmacol 139:3–14

    Article  CAS  PubMed  Google Scholar 

  3. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Banuelos CA, Williams DE, Mcewan IJ, Wang Y, Sadar MD (2010) Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17:535–546

    Article  CAS  PubMed  Google Scholar 

  4. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, Danila DC, Healy P, Anand M, Rothwell CJ, Rasmussen J, Thornburg B, Berry WR, Wilder RS, Lu C, Chen Y, Silberstein JL, Kemeny G, Galletti G, Somarelli JA, Gupta S, Gregory SG, Scher HI, Dittamore R, Tagawa ST, Antonarakis ES, George DJ (2019) Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the Prophecy study. J Clin Oncol 37:1120–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, Escara-Wilke J, Wilder-Romans K, Dhanireddy S, Engelke C, Iyer MK, Jing X, Wu YM, Cao X, Qin ZS, Wang S, Feng FY, Chinnaiyan AM (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bah A, Forman-Kay JD (2016) Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem 291:6696–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bain DL, Franden MA, Mcmanaman JL, Takimoto GS, Horwitz KB (2000) The N-terminal region of the human progesterone A-receptor. Structural analysis and the influence of the DNA binding domain. J Biol Chem 275:7313–7320

    Article  CAS  PubMed  Google Scholar 

  9. Banuelos CA, Ito Y, Obst JK, Mawji NR, Wang J, Hirayama Y, Leung JK, Tam T, Tien AH, Andersen RJ, Sadar MD (2020) Ralaniten sensitizes enzalutamide-resistant prostate cancer to ionizing radiation in prostate cancer cells that express androgen receptor splice variants. Cancers (Basel) 12:1991

    Article  CAS  Google Scholar 

  10. Banuelos CA, Lal A, Tien AH, Shah N, Yang YC, Mawji NR, Meimetis LG, Park J, Kunzhong J, Andersen RJ, Sadar MD (2014) Characterization of niphatenones that inhibit androgen receptor N-terminal domain. PLoS One 9:e107991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Banuelos CA, Tavakoli I, Tien AH, Caley DP, Mawji NR, Li Z, Wang J, Yang YC, Imamura Y, Yan L, Wen JG, Andersen RJ, Sadar MD (2016) Sintokamide A is a novel antagonist of androgen receptor that uniquely binds activation function-1 in its amino-terminal domain. J Biol Chem 291:22231–22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beato M (1989) Gene regulation by steroid hormones. Cell 56:335–344

    Article  CAS  PubMed  Google Scholar 

  13. Blanco JC, Minucci S, Lu J, Yang XJ, Walker KK, Chen H, Evans RM, Nakatani Y, Ozato K (1998) The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev 12:1638–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21:381–388

    Article  CAS  PubMed  Google Scholar 

  15. Burnstein KL (2005) Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem 95:657–669

    Article  CAS  PubMed  Google Scholar 

  16. Cato L, Neeb A, Sharp A, Buzon V, Ficarro SB, Yang L, Muhle-Goll C, Kuznik NC, Riisnaes R, Nava Rodrigues D, Armant O, Gourain V, Adelmant G, Ntim EA, Westerling T, Dolling D, Rescigno P, Figueiredo I, Fauser F, Wu J, Rottenberg JT, Shatkina L, Ester C, Luy B, Puchta H, Troppmair J, Jung N, Brase S, Strahle U, Marto JA, Nienhaus GU, Al-Lazikani B, Salvatella X, De Bono JS, Cato AC, Brown M (2017) Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. elife 6:e27159

    Google Scholar 

  17. Choi UB, Sanabria H, Smirnova T, Bowen ME, Weninger KR (2019) Spontaneous switching among conformational ensembles in intrinsically disordered proteins. Biomolecules 9:114

    Article  CAS  PubMed Central  Google Scholar 

  18. Claessens F, Alen P, Devos A, Peeters B, Verhoeven G, Rombauts W (1996) The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J Biol Chem 271:19013–19016

    Article  CAS  PubMed  Google Scholar 

  19. Claessens F, Joniau S, Helsen C (2017) Comparing the rules of engagement of androgen and glucocorticoid receptors. Cell Mol Life Sci 74:2217–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cleutjens CB, Steketee K, Van Eekelen CC, Van Der Korput JA, Brinkmann AO, Trapman J (1997) Both androgen receptor and glucocorticoid receptor are able to induce prostate-specific antigen expression, but differ in their growth-stimulating properties of LNCaP cells. Endocrinology 138:5293–5300

    Article  CAS  PubMed  Google Scholar 

  21. Clinckemalie L, Vanderschueren D, Boonen S, Claessens F (2012) The hinge region in androgen receptor control. Mol Cell Endocrinol 358:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Danielsen M, Northrop JP, Jonklaas J, Ringold GM (1987) Domains of the glucocorticoid receptor involved in specific and nonspecific deoxyribonucleic acid binding, hormone activation, and transcriptional enhancement. Mol Endocrinol 1:816–822

    Article  CAS  PubMed  Google Scholar 

  23. Darling AL, Uversky VN (2018) Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet 9:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. De Kruijff IE, Sieuwerts AM, Onstenk W, Jager A, Hamberg P, De Jongh FE, Smid M, Kraan J, Timmermans MA, Martens JWM, Sleijfer S (2019) Androgen receptor expression in circulating tumor cells of patients with metastatic breast cancer. Int J Cancer 145:1083–1089

    Article  PubMed  CAS  Google Scholar 

  25. De Mol E, Fenwick RB, Phang CT, Buzon V, Szulc E, De La Fuente A, Escobedo A, Garcia J, Bertoncini CW, Estebanez-Perpina E, Mcewan IJ, Riera A, Salvatella X (2016) EPI-001, a compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor. ACS Chem Biol 11:2499–2505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. De Mol E, Szulc E, Di Sanza C, Martinez-Cristobal P, Bertoncini CW, Fenwick RB, Frigole-Vivas M, Masin M, Hunter I, Buzon V, Brun-Heath I, Garcia J, De Fabritiis G, Estebanez-Perpina E, Mcewan IJ, Nebreda AR, Salvatella X (2018) Regulation of androgen receptor activity by transient interactions of its transactivation domain with general transcription regulators. Structure 26:145–152 e3

    Article  PubMed  CAS  Google Scholar 

  27. Devos A, Claessens F, Alen P, Winderickx J, Heyns W, Rombauts W, Peeters B (1997) Identification of a functional androgen-response element in the exon 1-coding sequence of the cystatin-related protein gene crp2. Mol Endocrinol 11:1033–1043

    Article  CAS  PubMed  Google Scholar 

  28. Dong J, Wu Z, Wang D, Pascal LE, Nelson JB, Wipf P, Wang Z (2019) Hsp70 binds to the androgen receptor N-terminal domain and modulates the receptor function in prostate cancer cells. Mol Cancer Ther 18:39–50

    Article  CAS  PubMed  Google Scholar 

  29. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  CAS  PubMed  Google Scholar 

  30. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  31. Eftekharzadeh B, Banduseela VC, Chiesa G, Martinez-Cristobal P, Rauch JN, Nath SR, Schwarz DMC, Shao H, Marin-Argany M, Di Sanza C, Giorgetti E, Yu Z, Pierattelli R, Felli IC, Brun-Heath I, Garcia J, Nebreda AR, Gestwicki JE, Lieberman AP, Salvatella X (2019) Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun 10:3562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z (2013) Androgen receptor gene mutation, rearrangement, polymorphism. Transl Androl Urol 2:137–147

    PubMed  PubMed Central  Google Scholar 

  33. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer K, Kelly SM, Watt K, Price NC, Mcewan IJ (2010) Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Mol Endocrinol 24:1935–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 20:3001–3015

    Article  CAS  PubMed  Google Scholar 

  37. Goicochea NL, Garnovskaya M, Blanton MG, Chan G, Weisbart R, Lilly MB (2017) Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy. Protein Eng Des Sel 30:785–793

    Article  PubMed  CAS  Google Scholar 

  38. Green S, Kumar V, Theulaz I, Wahli W, Chambon P (1988a) The N-terminal DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7:3037–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Griekspoor A, Zwart W, Neefjes J, Michalides R (2007) Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal 5:e003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. He Y, Chen Y, Mooney SM, Rajagopalan K, Bhargava A, Sacho E, Weninger K, Bryan PN, Kulkarni P, Orban J (2015) Phosphorylation-induced conformational ensemble switching in an intrinsically disordered cancer/testis antigen. J Biol Chem 290:25090–25102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  42. Hermanson O, Glass CK, Rosenfeld MG (2002) Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab 13:55–60

    Article  CAS  PubMed  Google Scholar 

  43. Hickey TE, Irvine CM, Dvinge H, Tarulli GA, Hanson AR, Ryan NK, Pickering MA, Birrell SN, Hu DG, Mackenzie PI, Russell R, Caldas C, Raj GV, Dehm SM, Plymate SR, Bradley RK, Tilley WD, Selth LA (2015) Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget 6:44728–44744

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hill KK, Roemer SC, Churchill ME, Edwards DP (2012) Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 348:418–429

    Article  CAS  PubMed  Google Scholar 

  45. Hilser VJ, Thompson EB (2011) Structural dynamics, intrinsic disorder, and allostery in nuclear receptors as transcription factors. J Biol Chem 286:39675–39682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirayama Y, Tam T, Jian K, Andersen RJ, Sadar MD (2020) Combination therapy with androgen receptor N-terminal domain antagonist EPI-7170 and enzalutamide yields synergistic activity in AR-V7-positive prostate cancer. Mol Oncol 14:2455–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holden NS, George T, Rider CF, Chandrasekhar A, Shah S, Kaur M, Johnson M, Siderovski DP, Leigh R, Giembycz MA, Newton R (2014) Induction of regulator of G-protein signaling 2 expression by long-acting beta2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells. J Pharmacol Exp Ther 348:12–24

    Article  PubMed  CAS  Google Scholar 

  48. Hollenberg SM, Giguere V, Segui P, Evans RM (1987) Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 49:39–46

    Article  CAS  PubMed  Google Scholar 

  49. Hu DG, Hickey TE, Irvine C, Wijayakumara DD, Lu L, Tilley WD, Selth LA, Mackenzie PI (2014) Identification of androgen receptor splice variant transcripts in breast cancer cell lines and human tissues. Horm Cancer 5:61–71

    Article  CAS  PubMed  Google Scholar 

  50. Hunter I, Hay CW, Esswein B, Watt K, Mcewan IJ (2018) Tissue control of androgen action: the ups and downs of androgen receptor expression. Mol Cell Endocrinol 465:27–35

    Article  CAS  PubMed  Google Scholar 

  51. Imamura Y, Tien AH, Pan J, Leung JK, Banuelos CA, Jian K, Wang J, Mawji NR, Fernandez JG, Lin KS, Andersen RJ, Sadar MD (2016) An imaging agent to detect androgen receptor and its active splice variants in prostate cancer. JCI Insight 1:e87850

    Article  PubMed  PubMed Central  Google Scholar 

  52. Isikbay M, Otto K, Kregel S, Kach J, Cai Y, Vander Griend DJ, Conzen SD, Szmulewitz RZ (2014) Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 5:72–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito Y, Sadar MD (2018) Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Res Rep Urol 10:23–32

    Google Scholar 

  54. Jantzen HM, Strahle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R, Schutz G (1987) Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49:29–38

    Article  CAS  PubMed  Google Scholar 

  55. Jenster G, Van Der Korput HA, Trapman J, Brinkmann AO (1995) Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270:7341–7346

    Article  CAS  PubMed  Google Scholar 

  56. Jenster G, Van Der Korput HA, Van Vroonhoven C, Van Der Kwast TH, Trapman J, Brinkmann AO (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396–1404

    Article  CAS  PubMed  Google Scholar 

  57. Johnson AB, O’Malley BW (2012) Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348:430–439

    Article  CAS  PubMed  Google Scholar 

  58. Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J, Mawji NR, Sadar MD (2016) Cotargeting androgen receptor splice variants and mTOR signaling pathway for the treatment of castration-resistant prostate cancer. Clin Cancer Res 22:2744–2754

    Article  CAS  PubMed  Google Scholar 

  59. Krasowski MD, Reschly EJ, Ekins S (2008) Intrinsic disorder in nuclear hormone receptors. J Proteome Res 7:4359–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kulkarni P, Uversky VN (2019) Intrinsically disordered proteins in chronic diseases. Biomolecules 9:147

    Article  CAS  PubMed Central  Google Scholar 

  61. Kumar R, Betney R, Li J, Thompson EB, Mcewan IJ (2004a) Induced alpha-helix structure in AF1 of the androgen receptor upon binding transcription factor TFIIF. Biochemistry 43:3008–3013

    Article  CAS  PubMed  Google Scholar 

  62. Kumar R, Moure CM, Khan SH, Callaway C, Grimm SL, Goswami D, Griffin PR, Edwards DP (2013) Regulation of the structurally dynamic N-terminal domain of progesterone receptor by protein-induced folding. J Biol Chem 288:30285–30299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar R, Thompson EB (1999) The structure of the nuclear hormone receptors. Steroids 64:310–319

    Article  CAS  PubMed  Google Scholar 

  64. Kumar R, Thompson EB (2003) Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol 17:1–10

    Article  CAS  PubMed  Google Scholar 

  65. Kumar R, Thompson EB (2019) Role of phosphorylation in the modulation of the glucocorticoid receptor’s intrinsically disordered domain. Biomolecules 9:95

    Google Scholar 

  66. Kumar R, Volk DE, Li J, Lee JC, Gorenstein DG, Thompson EB (2004b) TATA box binding protein induces structure in the recombinant glucocorticoid receptor AF1 domain. Proc Natl Acad Sci U S A 101:16425–16430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R (2011) The dynamic structure of the estrogen receptor. J Amino Acids 2011:812540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51:941–951

    Article  CAS  PubMed  Google Scholar 

  69. Kuznik NC, Solozobova V, Jung N, Grassle S, Lei Q, Lewandowski EM, Munuganti R, Zoubeidi A, Chen Y, Brase S, Cato ACB (2021) Development of a benzothiazole scaffold-based androgen receptor N-terminal inhibitor for treating androgen-responsive prostate cancer. ACS Chem Biol 16:2103–2108

    Article  CAS  PubMed  Google Scholar 

  70. Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D (1992) Evolution of the nuclear receptor gene superfamily. EMBO J 11:1003–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lavery DN, Mcewan IJ (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 47:3360–3369

    Article  CAS  PubMed  Google Scholar 

  72. Le Moigne R, Pearson P, Lauriault V, Hong NH, Virsik P, Zhou HJ, Cesano A (2021) Preclinical and clinical pharmacology of EPI-7386, an androgen receptor N-terminal domain inhibitor for castration-resistant prostate cancer. J Clin Oncol 39:119

    Article  Google Scholar 

  73. Lee I, Kuznik NC, Rottenberg JT, Brown M, Cato ACB (2019) BAG1L: a promising therapeutic target for androgen receptor-dependent prostate cancer. J Mol Endocrinol 62:R289–R299

    Article  CAS  PubMed  Google Scholar 

  74. Leone G, Tucci M, Buttigliero C, Zichi C, Pignataro D, Bironzo P, Vignani F, Scagliotti GV, Di Maio M (2018) Antiandrogen withdrawal syndrome (AAWS) in the treatment of patients with prostate cancer. Endocr Relat Cancer 25:R1–R9

    Article  CAS  PubMed  Google Scholar 

  75. Leung JK, Tien AH, Sadar MD (2021a) Androgen receptors in the pathology of disease. In: Badr MZ (ed) Nuclear receptors: the art and science of modulator design and discovery. Springer, Cham

    Google Scholar 

  76. Leung JK, Imamura Y, Kato M, Wang J, Mawji NR, Sadar MD (2021b) Pin1 inhibition improves the efficacy of ralaniten compounds that bind to the N-terminal domain of androgen receptor. Commun Biol 4:v381

    Article  CAS  Google Scholar 

  77. Lifesciences (2021) ESSA pharma presents favorable initial phase 1 clinical pharmacology data of EPI-7386 for advanced forms of prostate cancer at the 2021 ASCO genitourinary cancers symposium [Online]. Available: https://lifesciencesbc.ca/members/essa-pharma-presents-favorable-initial-phase-1-clinical-pharmacology-data-of-epi-7386-for-advanced-forms-of-prostate-cancer-at-the-2021-asco-genitourinary-cancers-symposium [Accessed]

  78. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, Zhao R, Noel ODV, Tepper CG, Chen HW, Dall’Era M, Evans CP, Gao AC (2018) Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 9:4700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Loven MA, Davis RE, Curtis CD, Muster N, Yates JR, Nardulli AM (2004) A novel estrogen receptor alpha-associated protein alters receptor-deoxyribonucleic acid interactions and represses receptor-mediated transcription. Mol Endocrinol 18:2649–2659

    Article  CAS  PubMed  Google Scholar 

  80. Loven MA, Likhite VS, Choi I, Nardulli AM (2001) Estrogen response elements alter coactivator recruitment through allosteric modulation of estrogen receptor beta conformation. J Biol Chem 276:45282–45288

    Article  CAS  PubMed  Google Scholar 

  81. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marsh JA, Forman-Kay JD (2012) Ensemble modeling of protein disordered states: experimental restraint contributions and validation. Proteins 80:556–572

    Article  CAS  PubMed  Google Scholar 

  83. Martin SK, Banuelos CA, Sadar MD, Kyprianou N (2014) N-terminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Mol Oncol 9:628–639

    Article  PubMed Central  CAS  Google Scholar 

  84. Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, Basler S, Schafer M, Egner U, Carrondo MA (2000) Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 275:26164–26171

    Article  CAS  PubMed  Google Scholar 

  85. Mcinerney EM, Katzenellenbogen BS (1996) Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J Biol Chem 271:24172–24178

    Article  CAS  PubMed  Google Scholar 

  86. Meimetis LG, Williams DE, Mawji NR, Banuelos CA, Lal AA, Park JJ, Tien AH, Fernandez JG, De Voogd NJ, Sadar MD, Andersen RJ (2012) Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: structure elucidation, synthesis, and biological activity. J Med Chem 55:503–514

    Article  CAS  PubMed  Google Scholar 

  87. Miller CP, Shomali M, Lyttle CR, O’Dea LS, Herendeen H, Gallacher K, Paquin D, Compton DR, Sahoo B, Kerrigan SA, Burge MS, Nickels M, Green JL, Katzenellenbogen JA, Tchesnokov A, Hattersley G (2011) Design, synthesis, and preclinical characterization of the selective androgen receptor modulator (SARM) RAD140. ACS Med Chem Lett 2:124–129

    Article  CAS  PubMed  Google Scholar 

  88. Moses MA, Kim YS, Rivera-Marquez GM, Oshima N, Watson MJ, Beebe KE, Wells C, Lee S, Zuehlke AD, Shao H, Bingman WE 3rd, Kumar V, Malhotra SV, Weigel NL, Gestwicki JE, Trepel JB, Neckers LM (2018) Targeting the Hsp40/Hsp70 chaperone axis as a novel strategy to treat castration-resistant prostate cancer. Cancer Res 78:4022–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Motlagh HN, Hilser VJ (2012) Agonism/antagonism switching in allosteric ensembles. Proc Natl Acad Sci U S A 109:4134–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Myung JK, Banuelos CA, Fernandez JG, Mawji NR, Wang J, Tien AH, Yang YC, Tavakoli I, Haile S, Watt K, Mcewan IJ, Plymate S, Andersen RJ, Sadar MD (2013) An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest 123:2948–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Myung JK, Wang G, Chiu HH, Wang J, Mawji NR, Sadar MD (2017) Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One 12:e0174134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Neumann F, Elger W (1966) The effect of a new antiandrogenic steroid, 6-chloro-17-Hydroxy-1alpha, 2alpha-methylenepregna-4,6-diene-3,20-dione acetate (cyproterone acetate) on the sebaceous glands of mice. J Invest Dermatol 46:561–572

    Article  CAS  PubMed  Google Scholar 

  93. Ni L, Llewellyn R, Kesler CT, Kelley JB, Spencer A, Snow CJ, Shank L, Paschal BM (2013) Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Mol Cell Biol 33:4766–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Obst JK, Wang J, Jian K, Williams DE, Tien AH, Mawji N, Tam T, Yang YC, Andersen RJ, Chi KN, Montgomery B, Sadar MD (2019) Revealing metabolic liabilities of ralaniten to enhance novel androgen receptor targeted therapies. ACS Pharmacol Transl Sci 2:453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145–14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quayle SN, Mawji NR, Wang J, Sadar MD (2007) Androgen receptor decoy molecules block the growth of prostate cancer. Proc Natl Acad Sci U S A 104:1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reid J, Kelly SM, Watt K, Price NC, Mcewan IJ (2002) Conformational analysis of the androgen receptor amino-terminal domain involved in transactivation. Influence of structure-stabilizing solutes and protein-protein interactions. J Biol Chem 277:20079–20086

    Article  CAS  PubMed  Google Scholar 

  98. Roemer SC, Donham DC, Sherman L, Pon VH, Edwards DP, Churchill ME (2006) Structure of the progesterone receptor-deoxyribonucleic acid complex: novel interactions required for binding to half-site response elements. Mol Endocrinol 20:3042–3052

    Article  CAS  PubMed  Google Scholar 

  99. Sadar MD (2011) Small molecule inhibitors targeting the “achilles’ heel” of androgen receptor activity. Cancer Res 71:1208–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sadar MD (2020) Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discovery 15:551–560

    Article  CAS  Google Scholar 

  101. Sadar MD, Williams DE, Mawji NR, Patrick BO, Wikanta T, Chasanah E, Irianto HE, Soest RV, Andersen RJ (2008) Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Org Lett 10:4947–4950

    Article  CAS  PubMed  Google Scholar 

  102. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S, Janne OA (2013) FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 73:1570–1580

    Article  CAS  PubMed  Google Scholar 

  103. Scher HI, Graf RP, Schreiber NA, Jayaram A, Winquist E, Mclaughlin B, Lu D, Fleisher M, Orr S, Lowes L, Anderson A, Wang Y, Dittamore R, Allan AL, Attard G, Heller G (2018) Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol 4:1179–1186

    Article  PubMed  PubMed Central  Google Scholar 

  104. Scher HI, Lu D, Schreiber NA, Louw J, Graf RP, Vargas HA, Johnson A, Jendrisak A, Bambury R, Danila D, Mclaughlin B, Wahl J, Greene SB, Heller G, Marrinucci D, Fleisher M, Dittamore R (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2:1441–1449

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci U S A 101:4758–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simons SS (2010) Glucocorticoid receptor cofactors as therapeutic targets. Curr Opin Pharmacol 10:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tan MH, Li J, Xu HE, Melcher K, Yong EL (2015) Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36:3–23

    Article  CAS  PubMed  Google Scholar 

  108. Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, Pretlow TG, Kung HJ (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62:6606–6614

    CAS  PubMed  Google Scholar 

  109. Tien AH, Sadar MD (2018) Order within a disordered structure. Structure 26:4–6

    Article  CAS  PubMed  Google Scholar 

  110. Tien AH, Sadar MD (2021) Cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ralaniten analogues for the treatment of androgen receptor-positive prostate and breast cancers. Mol Cancer Ther. molcanther.0411.2021

    Google Scholar 

  111. Ueda T, Mawji NR, Bruchovsky N, Sadar MD (2002) Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277:38087–38094

    Article  CAS  PubMed  Google Scholar 

  112. Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146

    Article  CAS  PubMed  Google Scholar 

  113. Wang L, Wu Y, Zhang W, Kannan K (2012) Widespread occurrence and distribution of bisphenol A diglycidyl ether (BADGE) and its derivatives in human urine from the United States and China. Environ Sci Technol 46:12968–12976

    Article  CAS  PubMed  Google Scholar 

  114. Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, O’Malley BW (2011) Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol 25:2041–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ward JJ, Sodhi JS, Mcguffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  116. Wardell SE, Kwok SC, Sherman L, Hodges RS, Edwards DP (2005) Regulation of the amino-terminal transcription activation domain of progesterone receptor by a cofactor-induced protein folding mechanism. Mol Cell Biol 25:8792–8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6:1882–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19:209–252

    Article  CAS  PubMed  Google Scholar 

  120. Yang J, Young MJ (2009) The mineralocorticoid receptor and its coregulators. J Mol Endocrinol 43:53–64

    Article  CAS  PubMed  Google Scholar 

  121. Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, Mcewan IJ, Plymate S, Sadar MD (2016) Targeting androgen receptor activation function-1 with EPI to overcome resistance mechanisms in castration-resistant prostate cancer. Clin Cancer Res 22:4466–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. York B, O’Malley BW (2010) Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285:38743–38750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O’Malley BW (2020) Structural insights of transcriptionally active, full-length androgen receptor coactivator complexes. Mol Cell 79(812-823):e4

    Google Scholar 

  124. Zhou J, Zhao S, Dunker AK (2018) Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J Mol Biol 430:2342–2359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne D. Sadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadar, M.D. (2022). Drugging the Undruggable: Targeting the N-Terminal Domain of Nuclear Hormone Receptors. In: Campbell, M.J., Bevan, C.L. (eds) Nuclear Receptors in Human Health and Disease. Advances in Experimental Medicine and Biology, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-031-11836-4_18

Download citation

Publish with us

Policies and ethics