Skip to main content

ERβ and Inflammation

  • Chapter
  • First Online:
Nuclear Receptors in Human Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1390))

Abstract

Estrogen, through the regulation of cytokine production, can act both as pro-inflammatory and anti-inflammatory signals dependent on the tissue context. In breast cancer cells, ERα is known to modulate inflammatory signaling through interaction with NFκB. Whether ERβ has a role in inflammation is less explored. Low levels of ERβ have been corroborated in several immune-related organs and, for example, in colonic epithelial cells. Specifically, an impact of ERβ on colitis and colitis-associated colorectal cancer (CRC) is experimentally supported, using ERβ-selective agonists, full-body ERβ knockout mice and, most recently, intestinal epithelial-specific knockout mice. An intricate crosstalk between ERβ and TNFα/NFκB signaling in the colon is supported, and ERβ activation appears to reduce macrophage infiltration also during high fat diet (HFD)-induced colon inflammation. Finally, the gut microbiota plays a fundamental role in the pathogenesis of colitis and ERβ has been indicated to modulate the microbiota diversity during colitis and colitis-induced CRC. ERβ is thus proposed to protect against colitis, by modulating NFκB signaling, immune cell infiltration, and/or microbiota composition. Selective activation of ERβ may therefore constitute a suitable preventative approach for the treatment of for example colitis-associated CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokolova O, Naumann M (2019) Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. Curr Top Microbiol Immunol 421:107–137

    CAS  PubMed  Google Scholar 

  2. Choi PM, Zelig MP (1994) Similarity of colorectal cancer in Crohn’s disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut 35:950–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Missaghi B, Barkema HW, Madsen KL, Ghosh S (2014) Perturbation of the human microbiome as a contributor to inflammatory bowel disease. Pathogens 3:510–527

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee SH (2015) Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 13:11–18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salim SY, Söderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17:362–381

    Article  PubMed  Google Scholar 

  6. Zeissig S et al (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  CAS  PubMed  Google Scholar 

  7. van der Post S et al (2019) Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68:2142–2151

    Article  PubMed  CAS  Google Scholar 

  8. Ahmed I, Roy BC, Khan SA, Septer S, Umar S (2016) Microbiome, metabolome and inflammatory bowel disease. Microorganisms 4

    Google Scholar 

  9. Alam MT et al (2020) Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathog 12:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reimund JM et al (1996) Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol 16:144–150

    Article  CAS  PubMed  Google Scholar 

  11. Reimund JM et al (1996) Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut 39:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller MF, Ibrahim AE, Arends MJ (2016) Molecular pathological classification of colorectal cancer. Virchows Arch 469:125–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Marley AR, Nan H (2016) Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet 7:105–114

    PubMed  PubMed Central  Google Scholar 

  14. Parent M, El-Zein M, Rousseau MC, Pintos J, Siemiatycki J (2012) Night work and the risk of cancer among men. Am J Epidemiol 176:751–759

    Article  PubMed  Google Scholar 

  15. Lee Y (2021) Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med 53:1529–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai Z, Xu YC, Niu L (2007) Obesity and colorectal cancer risk: a meta-analysis of cohort studies. World J Gastroenterol 13:4199–4206

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harriss DJ et al (2009) Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Color Dis Off J Assoc Coloproctol G B Irel 11:547–563

    CAS  Google Scholar 

  18. Polednak AP (2008) Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers. Cancer Detect Prev 32:190–199

    Article  PubMed  Google Scholar 

  19. Yehuda-Shnaidman E, Schwartz B (2012) Mechanisms linking obesity, inflammation and altered metabolism to colon carcinogenesis. Obes Rev 13:1083–1095

    Article  CAS  PubMed  Google Scholar 

  20. Loomans-Kropp HA, Umar A (2019) Increasing incidence of colorectal cancer in young adults. J Cancer Epidemiol 2019:9841295

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ (2017) Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol 14:110–121

    Article  CAS  PubMed  Google Scholar 

  22. Kawano Y et al (2016) Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metab 24:295–310

    Article  CAS  PubMed  Google Scholar 

  23. Xie Y et al (2020) Impact of a high-fat diet on intestinal stem cells and epithelial barrier function in middle-aged female mice. Mol Med Rep 21:1133–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Z et al (2012) Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem 23:1207–1213

    Article  CAS  PubMed  Google Scholar 

  25. Luck H et al (2015) Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21:527–542

    Article  CAS  PubMed  Google Scholar 

  26. Beyaz S et al (2016) High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cani PD et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  PubMed  Google Scholar 

  28. Hildebrandt MA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716-1724.e1711-1712

    Article  CAS  Google Scholar 

  29. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7:e47713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serino M et al (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61:543–553

    Article  CAS  PubMed  Google Scholar 

  31. Wunderlich CM et al (2018) Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat Commun 9:1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tuominen I et al (2013) Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice. PLoS One 8:e60939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harper JW, Zisman TL (2016) Interaction of obesity and inflammatory bowel disease. World J Gastroenterol 22:7868–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez-Hernandez H, Simental-Mendia LE, Rodriguez-Ramirez G, Reyes-Romero MA (2013) Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013:678159

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rowland I et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24

    Article  CAS  PubMed  Google Scholar 

  36. Parada Venegas D et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    Article  CAS  PubMed  Google Scholar 

  38. Bilotta AJ, Cong Y (2019) Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precis Clin Med 2:110–119

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lobionda S, Sittipo P, Kwon HY, Lee YK (2019) The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 7

    Google Scholar 

  40. Voigt RM, Forsyth CB, Keshavarzian A (2019) Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 13:411–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan L, Silver R (2016) Neuroendocrine underpinnings of sex differences in circadian timing systems. J Steroid Biochem Mol Biol 160:118–126

    Article  CAS  PubMed  Google Scholar 

  42. Hong HK et al (2018) Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev 32:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leppkes M, Roulis M, Neurath MF, Kollias G, Becker C (2014) Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. Int Immunol 26:509–515

    Article  CAS  PubMed  Google Scholar 

  44. Senftleben U, Karin M (2002) The IKK/NF-kappaB pathway. Crit Care Med 30:S18–s26

    Article  CAS  PubMed  Google Scholar 

  45. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jana A et al (2017) NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway. Oncotarget 8:37377–37393

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schottelius AJ, Dinter H (2006) Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res 130:67–87

    Article  CAS  PubMed  Google Scholar 

  48. Coyle C, Cafferty FH, Langley RE (2016) Aspirin and colorectal cancer prevention and treatment: is it for everyone? Curr Colorectal Cancer Rep 12:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng SL, Roddick AJ (2019) Association of Aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA 321:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagaishi T et al (2016) Epithelial nuclear factor-x03BA;B activation in inflammatory bowel diseases and colitis-associated carcinogenesis. Digestion 93:40–46

    Article  CAS  PubMed  Google Scholar 

  51. Singh S, George J, Boland BS, Vande Casteele N, Sandborn WJ (2018) Primary non-response to tumor necrosis factor antagonists is associated with inferior response to second-line biologics in patients with inflammatory bowel diseases: a systematic review and meta-analysis. J Crohns Colitis 12:635–643

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lin Y et al (2020) Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. Onco Targets Ther 13:13023–13032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52

    Article  CAS  PubMed  Google Scholar 

  54. Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25:2957–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xing D et al (2012) Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One 7:e36890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frasor J et al (2009) Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 69:8918–8925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim SE et al (2015) Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol 21:5167–5175

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zheng D et al (2018) Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett 438:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hases L et al (2021) The importance of sex in the discovery of colorectal cancer prognostic biomarkers. Int J Mol Sci 22:1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brozek W, Kriwanek S, Bonner E, Peterlik M, Cross HS (2009) Mutual associations between malignancy, age, gender, and subsite incidence of colorectal cancer. Anticancer Res 29:3721–3726

    PubMed  Google Scholar 

  61. Soderlund S et al (2010) Inflammatory bowel disease confers a lower risk of colorectal cancer to females than to males. Gastroenterology 138:1697–1703

    Article  PubMed  Google Scholar 

  62. Hendifar A et al (2009) Gender disparities in metastatic colorectal cancer survival. Clin Cancer Res 15:6391–6397

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grodstein F, Newcomb PA, Stampfer MJ (1999) Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis. Am J Med 106:574–582

    Article  CAS  PubMed  Google Scholar 

  64. Newcomb PA et al (2007) Estrogen plus progestin use, microsatellite instability, and the risk of colorectal cancer in women. Cancer Res 67:7534–7539

    Article  CAS  PubMed  Google Scholar 

  65. Murphy N et al (2015) A prospective evaluation of endogenous sex hormone levels and colorectal cancer risk in postmenopausal women. J Natl Cancer Inst 107

    Google Scholar 

  66. Fernandez E et al (2001) Oral contraceptives and colorectal cancer risk: a meta-analysis. Br J Cancer 84:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giardiello FM et al (2005) Oral contraceptives and polyp regression in familial adenomatous polyposis. Gastroenterology 128:1077–1080

    Article  PubMed  Google Scholar 

  68. Cotterchio M et al (2006) Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr 136:3046–3053

    Article  CAS  PubMed  Google Scholar 

  69. Botteri E et al (2017) Menopausal hormone therapy and colorectal cancer: a linkage between nationwide registries in Norway. BMJ Open 7:e017639

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lobo RA (2017) Hormone-replacement therapy: current thinking. Nat Rev Endocrinol 13:220–231

    Article  CAS  PubMed  Google Scholar 

  71. Liu Q et al (2021) Menopausal hormone therapies and risk of colorectal cancer: a Swedish matched-cohort study. Aliment Pharmacol Ther 53:1216–1225

    CAS  PubMed  Google Scholar 

  72. Frezza EE, Wachtel MS, Chiriva-Internati M (2006) Influence of obesity on the risk of developing colon cancer. Gut 55:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaaks R et al (2000) Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 92:1592–1600

    Article  CAS  PubMed  Google Scholar 

  75. De Paoli M, Zakharia A, Werstuck GH (2021) The role of estrogen in insulin resistance: a review of clinical and preclinical data. Am J Pathol 191:1490–1498

    Article  PubMed  CAS  Google Scholar 

  76. Salpeter SR et al (2006) Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab 8:538–554

    Article  CAS  PubMed  Google Scholar 

  77. Stachowiak G, Pertynski T, Pertynska-Marczewska M (2015) Metabolic disorders in menopause. Prz Menopauzalny 14:59–64

    PubMed  PubMed Central  Google Scholar 

  78. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM (2017) Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 103:45–53

    Article  CAS  PubMed  Google Scholar 

  79. Hong H, Landauer MR, Foriska MA, Ledney GD (2006) Antibacterial activity of the soy isoflavone genistein. J Basic Microbiol 46:329–335

    Article  CAS  PubMed  Google Scholar 

  80. Clavel T et al (2005) Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr 135:2786–2792

    Article  CAS  PubMed  Google Scholar 

  81. Nakatsu CH et al (2014) Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption. PLoS One 9:e108924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fang K et al (2016) Soy isoflavones and glucose metabolism in menopausal women: a systematic review and meta-analysis of randomized controlled trials. Mol Nutr Food Res 60:1602–1614

    Article  CAS  PubMed  Google Scholar 

  83. Zhao H et al (2019) Compositional and functional features of the female premenopausal and postmenopausal gut microbiota. FEBS Lett 593:2655–2664

    Article  CAS  PubMed  Google Scholar 

  84. Org E et al (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaliannan K et al (2018) Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  86. Song CH et al (2020) 17β-estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Sci Rep 10:12283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Son HJ et al (2019) Effect of estradiol in an Azoxymethane/dextran sulfate sodium-treated mouse model of colorectal cancer: implication for sex difference in colorectal cancer development. Cancer Res Treat 51:632–648

    Article  CAS  PubMed  Google Scholar 

  88. Lee SM et al (2016) The effect of sex on the Azoxymethane/dextran sulfate sodium-treated mice model of colon cancer. J Cancer Prev 21:271–278

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hases L et al (2020) Intestinal estrogen receptor beta suppresses colon inflammation and tumorigenesis in both sexes. Cancer Lett 492:54–62

    Article  CAS  PubMed  Google Scholar 

  90. Song CH et al (2019) Effects of 17β-estradiol on colorectal cancer development after azoxymethane/dextran sulfate sodium treatment of ovariectomized mice. Biochem Pharmacol 164:139–151

    Article  CAS  PubMed  Google Scholar 

  91. Andersson S et al (2017) Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 8:15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A 97:12729–12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manrique C et al (2012) Loss of estrogen receptor α signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal Med 2:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Foryst-Ludwig A et al (2008) Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet 4:e1000108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hases L et al (2020) High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner. Sci Rep 10:16160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Honma N et al (2013) Estrogen receptor-beta gene polymorphism and colorectal cancer risk: effect modified by body mass index and isoflavone intake. Int J Cancer 132:951–958

    Article  CAS  PubMed  Google Scholar 

  97. Passarelli MN et al (2013) Common single-nucleotide polymorphisms in the estrogen receptor beta promoter are associated with colorectal cancer survival in postmenopausal women. Cancer Res 73:767–775

    Article  CAS  PubMed  Google Scholar 

  98. Edvardsson K et al (2013) Estrogen receptor β expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis 34:1431–1441

    Article  CAS  PubMed  Google Scholar 

  99. Nguyen-Vu T et al (2016) Estrogen receptor beta reduces colon cancer metastasis through a novel miR-205 - PROX1 mechanism. Oncotarget 7:42159–42171

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hartman J et al (2009) Tumor repressive functions of estrogen receptor beta in SW480 colon cancer cells. Cancer Res 69:6100–6106

    Article  CAS  PubMed  Google Scholar 

  101. Wada-Hiraike O et al (2006) Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A 103:2959–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saleiro D et al (2012) Estrogen receptor-β protects against colitis-associated neoplasia in mice. Int J Cancer 131:2553–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Giroux V, Bernatchez G, Carrier JC (2011) Chemopreventive effect of ERβ-selective agonist on intestinal tumorigenesis in Apc(Min/+) mice. Mol Carcinog 50:359–369

    Article  CAS  PubMed  Google Scholar 

  104. Kyoko OO et al (2014) Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis. PLoS One 9:e98016

    Article  PubMed  CAS  Google Scholar 

  105. Deaver JA, Eum SY, Toborek M (2018) Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol 9:737

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pagel R et al (2017) Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB J 31:4707–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Voigt RM et al (2014) Circadian disorganization alters intestinal microbiota. PLoS One 9:e97500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ibrahim A et al (2019) Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int J Cancer 144:3086–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaiko GE et al (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165:1708–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kushkevych I et al (2020) Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells 9

    Google Scholar 

  111. Ijssennagger N et al (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A 112:10038–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zagato E et al (2020) Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 5:511–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Aso T et al (2012) A natural S-equol supplement alleviates hot flushes and other menopausal symptoms in equol nonproducing postmenopausal Japanese women. J Womens Health (Larchmt) 21:92–100

    Article  Google Scholar 

  114. Tagliaferri MA, Tagliaferri MC, Creasman JM, Koltun WD (2016) A selective estrogen receptor Beta agonist for the treatment of hot flushes: phase 2 clinical trial. J Altern Complement Med 22:722–728

    Article  PubMed  Google Scholar 

  115. Williams C, DiLeo A, Niv Y, Gustafsson J (2016) Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett 372:48–56

    Article  CAS  PubMed  Google Scholar 

  116. Mukherji A, Kobiita A, Ye T, Chambon P (2013) Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153:812–827

    Article  CAS  PubMed  Google Scholar 

  117. Weintraub Y et al (2020) Clock gene disruption is an initial manifestation of inflammatory bowel diseases. Clin Gastroenterol Hepatol 18:115-122.e111

    Article  CAS  Google Scholar 

  118. Wang S et al (2018) REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis. Nat Commun 9:4246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cai W et al (2008) Expression levels of estrogen receptor beta are modulated by components of the molecular clock. Mol Cell Biol 28:784–793

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Society (21 1632 Pj), Swedish Research Council (2017-01658), and Stockholm County Council (RS2021-0316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hases, L., Archer, A., Williams, C. (2022). ERβ and Inflammation. In: Campbell, M.J., Bevan, C.L. (eds) Nuclear Receptors in Human Health and Disease. Advances in Experimental Medicine and Biology, vol 1390. Springer, Cham. https://doi.org/10.1007/978-3-031-11836-4_12

Download citation

Publish with us

Policies and ethics