Skip to main content

Bartter-, Gitelman-, and Related Syndromes

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The focus of this chapter are different disorders of primary renal salt-wasting caused by inherited dysfunction of ion-transporting proteins expressed along the thick ascending limb (TAL) of Henle’s loop and along the early distal convoluted tubule (DCT). The clinical presentation, the underlying pathophysiology resulting from the different gene defects and the therapeutic approaches for the different subtypes of Bartter syndrome, Gitelman syndrome and EAST syndrome will be discussed in detail. Renal salt-wasting due to impaired sodium reabsorption along the aldosterone-sensitive distal nephron (ASDN) composed of the late DCT, the connecting tubule (CNT), and the collecting duct (CD) is accompanied by hyperkalemia and is discussed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeck N, Schlingmann KP, Reinalter SC, et al. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R782–95.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenbaum P, Hughes M. Persistent, probably congenital, hypokalemic metabolic alkalosis with hyaline degeneration of renal tubules and normal urinary aldosterone. Am J Dis Child. 1957;94:560.

    Google Scholar 

  3. Bartter FC, Pronove P, Gill JR, MacCardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med. 1962;33:811–28.

    Article  CAS  PubMed  Google Scholar 

  4. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians. 1966;79:221–35.

    CAS  PubMed  Google Scholar 

  5. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol. 1987;1(3):465–72.

    Article  CAS  PubMed  Google Scholar 

  6. Bettinelli A, Bianchetti MG, Girardin E, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr. 1992;120(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  7. Bartter FC, Pronove P, Gill JR Jr, MacCardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. 1962. J Am Soc Nephrol. 1998;9(3):516–28.

    Article  CAS  PubMed  Google Scholar 

  8. Fanconi A, Schachenmann G, Nüssli R, Prader A. Chronic hypokalaemia with growth retardation, normotensive hyperrenin-hyperaldosteronism (“Bartter’s syndrome”), and hypercalciuria. Report of two cases with emphasis on natural history and on catch-up growth during treatment. Helv Paediatr Acta. 1971;26(2):144–63.

    CAS  PubMed  Google Scholar 

  9. McCredie DA, Blair-West JR, Scoggins BA, Shipman R. Potassium-losing nephropathy of childhood. Med J Aust. 1971;1(3):129–35.

    Article  CAS  PubMed  Google Scholar 

  10. Ohlsson A, Sieck U, Cumming W, Akhtar M, Serenius F. A variant of Bartter’s syndrome. Bartter’s syndrome associated with hydramnios, prematurity, hypercalciuria and nephrocalcinosis. Acta Paediatr Scand. 1984;73(6):868–74.

    Article  CAS  PubMed  Google Scholar 

  11. Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K. Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr. 1985;107(5):694–701.

    Article  CAS  PubMed  Google Scholar 

  12. Seyberth HW, Königer SJ, Rascher W, Kühl PG, Schweer H. Role of prostaglandins in hyperprostaglandin E syndrome and in selected renal tubular disorders. Pediatr Nephrol. 1987;1(3):491–7.

    Article  CAS  PubMed  Google Scholar 

  13. Landau D, Shalev H, Ohaly M, Carmi R. Infantile variant of Bartter syndrome and sensorineural deafness: a new autosomal recessive disorder. Am J Med Genet. 1995;59(4):454–9.

    Article  CAS  PubMed  Google Scholar 

  14. Laghmani K, Beck BB, Yang SS, et al. Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N Engl J Med. 2016;374(19):1853–63.

    Article  CAS  PubMed  Google Scholar 

  15. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  16. Simon DB, Karet FE, Rodriguez-Soriano J, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  17. Birkenhäger R, Otto E, Schürmann MJ, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29(3):310–4.

    Article  PubMed  Google Scholar 

  18. Schlingmann KP, Konrad M, Jeck N, et al. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med. 2004;350(13):1314–9.

    Article  CAS  PubMed  Google Scholar 

  19. Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  20. Simon DB, Nelson-Williams C, Bia MJ, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe S, Fukumoto S, Chang H, et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002;360(9334):692–4.

    Article  CAS  PubMed  Google Scholar 

  22. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003;12(5):527–32.

    Article  PubMed  Google Scholar 

  23. Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106(14):5842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6.

    Article  CAS  PubMed  Google Scholar 

  26. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79(5):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamel KS, Oh MS, Halperin ML. Bartter’s, Gitelman’s, and Gordon’s syndromes. From physiology to molecular biology and back, yet still some unanswered questions. Nephron. 2002;92(Suppl 1):18–27.

    Article  CAS  PubMed  Google Scholar 

  28. Jeck N, Derst C, Wischmeyer E, et al. Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. Kidney Int. 2001;59(5):1803–11.

    Article  CAS  PubMed  Google Scholar 

  29. Finer G, Shalev H, Birk OS, et al. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr. 2003;142(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  30. Peters M, Jeck N, Reinalter S, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112(3):183–90.

    Article  PubMed  Google Scholar 

  31. Konrad M, Vollmer M, Lemmink HH, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol. 2000;11(8):1449–59.

    Article  CAS  PubMed  Google Scholar 

  32. Zelikovic I, Szargel R, Hawash A, et al. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int. 2003;63(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  33. Estévez R, Boettger T, Stein V, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature. 2001;414(6863):558–61.

    Article  PubMed  Google Scholar 

  34. Waldegger S, Jeck N, Barth P, et al. Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch. 2002;444(3):411–8.

    Article  CAS  PubMed  Google Scholar 

  35. Jeck N, Reinalter SC, Henne T, et al. Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics. 2001;108(1):E5.

    Article  CAS  PubMed  Google Scholar 

  36. Engels A, Gordjani N, Nolte S, Seyberth HW. Angeborene passagere hyperprostaglandinurische Tubulopathie bei zwei frühgeborenen Geschwistern. Mschr Kinderheilk. 1991;139:185.

    Google Scholar 

  37. Reinalter S, Devlieger H, Proesmans W. Neonatal Bartter syndrome: spontaneous resolution of all signs and symptoms. Pediatr Nephrol. 1998;12(3):186–8.

    Article  CAS  PubMed  Google Scholar 

  38. Legrand A, Treard C, Roncelin I, et al. Prevalence of novel. Clin J Am Soc Nephrol. 2018;13(2):242–50.

    Article  PubMed  Google Scholar 

  39. Zhang C, Wang L, Zhang J, et al. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A. 2014;111(32):11864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 2001;21(15):5429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scholl UI, Dave HB, Lu M, et al. SeSAME/EAST syndrome—phenotypic variability and delayed activity of the distal convoluted tubule. Pediatr Nephrol. 2012;27(11):2081–90.

    Article  PubMed  Google Scholar 

  42. Rodriguez-Soriano J. Bartter’s syndrome comes of age. Pediatrics. 1999;103(3):663–4.

    Article  CAS  PubMed  Google Scholar 

  43. Vaisbich MH, Fujimura MD, Koch VH. Bartter syndrome: benefits and side effects of long-term treatment. Pediatr Nephrol. 2004;19(8):858–63.

    Article  PubMed  Google Scholar 

  44. Reinalter SC, Jeck N, Brochhausen C, et al. Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2002;62(1):253–60.

    Article  CAS  PubMed  Google Scholar 

  45. Shalev H, Ohali M, Kachko L, Landau D. The neonatal variant of Bartter syndrome and deafness: preservation of renal function. Pediatrics. 2003;112(3 Pt 1):628–33.

    Article  PubMed  Google Scholar 

  46. Zaffanello M, Taranta A, Palma A, Bettinelli A, Marseglia GL, Emma F. Type IV Bartter syndrome: report of two new cases. Pediatr Nephrol. 2006;21(6):766–70.

    Article  PubMed  Google Scholar 

  47. Chaudhuri A, Salvatierra O, Alexander SR, Sarwal MM. Option of pre-emptive nephrectomy and renal transplantation for Bartter’s syndrome. Pediatr Transplant. 2006;10(2):266–70.

    Article  PubMed  Google Scholar 

  48. Knoers NV. Gitelman syndrome. Adv Chronic Kidney Dis. 2006;13(2):148–54.

    Article  PubMed  Google Scholar 

  49. Rodríguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol. 1998;12(4):315–27.

    Article  PubMed  Google Scholar 

  50. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci. 2001;322(6):316–32.

    Article  CAS  PubMed  Google Scholar 

  51. Riveira-Munoz E, Chang Q, Godefroid N, et al. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol. 2007;18(4):1271–83.

    Article  CAS  PubMed  Google Scholar 

  52. Godefroid N, Riveira-Munoz E, Saint-Martin C, Nassogne MC, Dahan K, Devuyst O. A novel splicing mutation in SLC12A3 associated with Gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis. 2006;48(5):e73–9.

    Article  PubMed  Google Scholar 

  53. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol. 1994;14(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  54. Blanchard A, Vargas-Poussou R, Vallet M, et al. Indomethacin, amiloride, or eplerenone for treating hypokalemia in Gitelman syndrome. J Am Soc Nephrol. 2015;26(2):468–75.

    Article  PubMed  Google Scholar 

  55. Bettinelli A, Tosetto C, Colussi G, Tommasini G, Edefonti A, Bianchetti MG. Electrocardiogram with prolonged QT interval in Gitelman disease. Kidney Int. 2002;62(2):580–4.

    Article  PubMed  Google Scholar 

  56. Foglia PE, Bettinelli A, Tosetto C, et al. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transplant. 2004;19(6):1398–402.

    Article  PubMed  Google Scholar 

  57. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB, Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59(2):710–7.

    Article  CAS  PubMed  Google Scholar 

  58. Bonfante L, Davis PA, Spinello M, et al. Chronic renal failure, end-stage renal disease, and peritoneal dialysis in Gitelman’s syndrome. Am J Kidney Dis. 2001;38(1):165–8.

    Article  CAS  PubMed  Google Scholar 

  59. Calò LA, Marchini F, Davis PA, Rigotti P, Pagnin E, Semplicini A. Kidney transplant in Gitelman’s syndrome. Report of the first case. J Nephrol. 2003;16(1):144–7.

    PubMed  Google Scholar 

  60. Konrad M, Nijenhuis T, Ariceta G, et al. Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. Kidney Int. 2021;99(2):324–35.

    Article  CAS  PubMed  Google Scholar 

  61. Blanchard A, Bockenhauer D, Bolignano D, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 2017;91(1):24–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waldegger, S., Schlingmann, K.P., Konrad, M. (2023). Bartter-, Gitelman-, and Related Syndromes. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics