Skip to main content

Energy Criterion for Identification of the Types of Material Macrofracture

  • Chapter
  • First Online:
Acoustic Emission

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 221 Accesses

Abstract

The investigation of the shape of signals and their amplitude–frequency characteristics is of great importance, first, to reveal the physical nature of radiation sources. This makes it possible to establish the kinetics of defect formation in bodies under loading. Simultaneous analysis of statistical and structural data of AE signals ensures the reliability of measurement results and facilitates their interpretation, thus increasing the efficiency of TD of engineering objects under control. This chapter describes the known methods of identification of the types of macrofracture by the energy of AE signals and presents the construction of the energy criterion by the energy parameters of AE signals and its verification. The fracture of the welded joints, the propagation of cracks of low-temperature creep, and the fracture of nonmetallic materials have been also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar, P. R., Martins, C. H. R., Marchi, M., & Bianchi, E. C. (2012). Digital signal processing for acoustic emission. Data acquisition applications. Retrieved 23 March, 2021, from https://www.intechopen.com/chapters/38499

  2. Anastasopoulos, A. A., & Envirocoustics, S. A. (2007). Signal processing and pattern recognition of AE signatures. In E. E. Gdoutos (Ed.), Experimental analysis of nano and engineering materials and structures (pp. 929–930). Springer.

    Chapter  Google Scholar 

  3. Ono, K. (2011). Acoustic emission in materials research—A review. Journal of Acoustic Emission, 29, 284–308.

    Google Scholar 

  4. Grosse, C. U., Ohtsu, M., Aggelis, D. G., & Shiotani, T. (Eds.). (2021). Acoustic emission testing. Basic for research—Applications in civil engineering (2nd ed.). Springer.

    Google Scholar 

  5. Skalskyi, V. R., Karpash, O. M., Koshovyi, V. V., Nedoseka, A. Ya., & Stankevych, O. M. (2017). Tekhnichna diahnostyka materialiv i konstrukcii, t 5: Akustychni metody kontrolyu dehradatsii materialiv i defektnosti elementiv konstrukcii. [Technical diagnostics of materials and structures, vol 5: Acoustic methods of control of materials degradation and structure elements damage]. Publishing House Prostir-M, Lviv.

    Google Scholar 

  6. Skal’skii, V. P., Builo, S. I., & Stankevich, E. M. (2012). A criterion for evaluating the brittle fracturing of glass using acoustic emission signals. Russian Journal of Nondestructive Testing, 48(5), 277–284.

    Google Scholar 

  7. Skal’s’kyi, V. R., Lyasota, I. M., & Stankevych, O. M. (2013). Acoustic-emission diagnostics of the initiation of fatigue fracture of 1201-T aluminum alloy. Materials Science, 48(5), 680–686.

    Google Scholar 

  8. Skalsky, V. R., Lyasota, I. M., & Stankevich, E. M. (2013). Peculiarities of acoustic emission signals in evaluation of fracture mechanism in welded joints on aluminium alloys. The Paton Welding Journal, 1, 21–27.

    Google Scholar 

  9. Skalskyi, V. R., Stankevych, E. M., & Basarab, R. M. (2013). Akustiko-emissionnoye diagnostirovaniye nefteperekachivayushchich stantsii (Acoustic emission diagnostics of oil pumping station equipment). Neftegasovoye Delo (Oil and Gas Business), 11(2), 86–90.

    Google Scholar 

  10. Nazarchuk, Z. T., Skal’s’kyi, V. R., & Stankevych, O. M. (2014). A method for the identification of the types of macrofracture of structural materials by the parameters of the wavelet transform of acoustic-emission signals. Materials Science, 49(6), 841–848.

    Article  Google Scholar 

  11. Skal’s’kyi, V. R., Makeev, V. F., Stankevych, O. M., & Kyrmanov, O. S. (2015). Alternation of the types of fracture for dental polymers in different stages of crack propagation. Materials Science, 50(6), 836–843.

    Google Scholar 

  12. Skal’s’kii, V. R., Makeev, V. F., Stankevich, O. M., Kyrmanov, O. S., Vynnyts’ka, S. I., & Opanasovich, V. K. (2015). Strength evaluation of stomatologic polymers by wavelet transform of acoustic emission signals. Strength of Materials, 47(4), 566–572

    Google Scholar 

  13. Skalskii, V. R., Dolinskaya, I. Y., Stankevich, E. M., & Matviiv, Y. Y. (2014). A technique for identifying the initial stage of the extension of low-temperature creep cracks. Russian Journal of Nondestructive Testing, 50(9), 539–547.

    Google Scholar 

  14. Stankevych, O., & Skalsky, V. (2016). Investigation and identification of fracture types of structural materials by means of acoustic emission analysis. Engineering Fracture Mechanics, 164, 24–34.

    Article  Google Scholar 

  15. Kuksenko, V. S., Lyashkov, A. I., & Savelyev, V. N. (1980). Akusticheskaya emissiya pri zarozhdenii i razvitii mikrotreshchin v stalyach (Acoustic emission during initiation and development of microcracks in steels). Defektoskopiya (Defectoscopy), 6, 57–63.

    Google Scholar 

  16. Lyashkov, A. I., Inzhevatkin, I. E., & Savelyev, V. N. (1980). Izucheniye zarozhdeniya mikrotreshchin v metallach metodom akusticheskoi emissii (Study of the initiation of microcracks in metals by the acoustic emission method). Defektoskopiya (Defectoscopy), 6, 98–101.

    Google Scholar 

  17. Bunina, N. A. (1990). Issledovaniye plasticheskoi deformacii metallov metodom akusticheskoi emissii (Study of plastic deformation of metals by the acoustic emission method). PH of Leningrad University.

    Google Scholar 

  18. Takahashi, H., Khan, M. A., Kikuchi, M., & Suzuki, M. (1981). Acoustic emission crack monitoring in fracture-toughness tests for AISI-4340 and SA 533B steels. Experimental Mechanics, 21(3), 89–99.

    Article  Google Scholar 

  19. Muravin, G. B., Finkel, V. M., Lezvinskaya, L. M., et al. (1984). Issledovaniye deformirovaniya kremnistoho zheleza metodom akusticheskoi emissii (Investigation of the deformation of siliceous iron by the acoustic emission method). Defektoskopiya (Defectoscopy), 10, 88–91.

    Google Scholar 

  20. Pardee, W., & Graham, L. J. (1975). Analysis of acoustic emission frequency spectra. IEEE Ultrasonic symposium proceedings, pp. 597–600. Los Angeles.

    Google Scholar 

  21. Mirabile, M. (1975). Acoustic emission energy and mechanisms of plastic deformation and fracture. NDT, 8(2), 77–85.

    CAS  Google Scholar 

  22. Maillet, E., Godin, N., R’Mili, M., Reynaud, P., Fantozzi, G., & Lamon, J. (2014). Real-time evaluation of energy attenuation: A novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites. Journal of the European Ceramic Society, 34, 1673–1679.

    Article  CAS  Google Scholar 

  23. Sagar, R. V., & Prasad, B. K. R. (2011). An experimental study on acoustic emission energy as a quantitative measure of size independent specific fracture energy of concrete beams. Construction and Build Materials, 25(5), 2349–2357.

    Article  Google Scholar 

  24. Maslov, I. I., & Gradov, O. M. (1986). Fracture energy analysis via acoustic emission. International Journal of Fatigue, 8(2), 67–71.

    Article  CAS  Google Scholar 

  25. Muralidhara, S., Prasad, B. K. R., Eskandari, H., & Karihaloo, B. L. (2010). Fracture process zone size and true fracture energy of concrete using acoustic emission. Construction and Build Materials, 24, 479–486.

    Article  Google Scholar 

  26. Carpinteri, A., Corrado, M., & Lacidogna, G. (2013). Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies. Engineering Failure Analysis, 33, 236–250.

    Article  Google Scholar 

  27. Carpinteri, A., Lacidogna, G., & Pugno, N. (2007). Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Engineering Fracture Mechanics, 74, 273–289.

    Article  Google Scholar 

  28. Al-Balushi, K. R., Addali, A., Charnley, B., & Mba, D. (2010). Energy index technique for detection of acoustic emissions associated with incipient bearing failures. Applied Acoustic, 71(9), 812–821.

    Article  Google Scholar 

  29. Laksimi, A., Benmedakhene, S., & Bounouas, L. (2021). Monitoring acoustic emission during tensile loading of thermoplastic composites materials. Retrieved 25 March, 2021, from http://www.iccm-central.org/Proceedings/ICCM12proceedings/site/papers/pap740.pdf

  30. Li, Y., & Yi-Chu, Z. (2006). Wavelet analysis of acoustic emission signals from thermal barrier coatings. Transactions of Nonferrous Metals Society of China, 16, 270–275.

    Article  Google Scholar 

  31. Khamedi, R., Fallahi, A., & Oskouei, A. R. (2010). Effect of martensite phase volume fraction on acoustic emission signals using wavelet packet analysis during tensile loading of dual phase steels. Materials & Design, 31, 2752–2759.

    Article  CAS  Google Scholar 

  32. Chen, C., Kovacevic, R., & Jandgric, D. (2003). Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminium. International Journal of Machine Tools and Manufacturing, 43, 1383-l390.

    Article  Google Scholar 

  33. Piotrkowski, R., Callego, A., Castro, E., García-Hernandez, M. T., & Ruzzante, J. E. (2005). Ti and Cr nitride coating/steel adherence assessed by acoustic emission wavelet analysis. NDT E International, 38, 260–267.

    Article  CAS  Google Scholar 

  34. Piotrkowski, R., Castro, E., & Gallego, A. (2009). Wavelet power, entropy and bispectrum applied to AE signals for damage identification and evaluation of corroded galvanized steel. Mechanical System and Signal Processing, 23, 432–445.

    Article  Google Scholar 

  35. Physical Acoustics Corporation. (2007). PCI-2 based AE system User’s manual. Physical Acoustic Corporation.

    Google Scholar 

  36. Proakis, J. G., & Manolakis, D. K. (2006). Digital signal processing (4th ed.). Prentice Hall.

    Google Scholar 

  37. Pulsed Radiation. (2021). Retrieved 25 March, 2021, from http://www.newport.com/Pulsed-Radiation/381844/1033/-content.aspx

  38. Astaf’eva, N. M. (1996). Wavelet analysis: Basic theory and some applications Physics-Uspechi, 39(11), 1085–1108

    Google Scholar 

  39. Vallen Systeme: The Acoustic Emission Company. Retrieved 25 March, 2021, from https://www.vallen.de/downloads/

  40. SKOP-8M portable 8-channel acoustic emission device for non-destructive testing of materials, products and structure elements. Retrieved 25 March, 2021, from https://www.ipm.lviv.ua/our_developments/our_developments.php

  41. Bianchetti, R., Hamstad, M. A., & Mukherjee, A. K. (1976). Origin of burst-type acoustic emission in inflawed 7075–T6 aluminium. Journal of Testing and Evaluation, 4(5), 313–318.

    Article  CAS  Google Scholar 

  42. Vinogradov, S. D. (1989). Akusticheskii metod v issledovaniyakh po fizike zemletryasenii (Acoustic method in research into the physics of earthquakes). Nauka.

    Google Scholar 

  43. Gonorovskii, I. S. (1986). Radiotekhnicheskiye cepi i signaly (Radio circuits and signals). Radio and communication.

    Google Scholar 

  44. Stankevych, O., & Skalsky, V. (2017). The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 72, 142–153.

    Article  Google Scholar 

  45. Mushyk, E., & Myuller, P. (1990). Metody prinyatiya tekhnicheskikh reshenii (Techniques for making technical decisions). Mir.

    Google Scholar 

  46. Smirnov, E. G. (1981). Akusticheskaya emissiya (Acoustic emission). Nauka i technika (Science and Technology), 15, 111–159.

    CAS  Google Scholar 

  47. Cousland, S. M., & Scala, C. M. (1981). Acoustic emission and microstructure in aluminium alloys 7075 and 7050. Metal Science, 15, 609–614.

    Article  Google Scholar 

  48. Bibik, Z. I., & Nazik, V. D. (1984). Akusticheskaya emissiya pri plasticheskoi deformacii polikristallov aluminiya vysokoi chistoty (Acoustic emission during plastic deformation of high-purity aluminum polycrystals). Metallofizika (Metal Physics), 4(4), 92–99.

    Google Scholar 

  49. Harris, D. O., & Dunegan, H. L. (1974). Continuous monitoring of fatigue-crack growth by acoustic-emission techniques. Experimental Mechanics, 14(2), 71–80.

    Article  Google Scholar 

  50. Mathis, K., & Chmelik, F. (2012). Exploring plastic deformation of metallic materials by the acoustic emission technique. In W. Sikorsky (Ed.), Acoustic emission (pp. 23–48). InTech.

    Google Scholar 

  51. Ivanov, Yu. F., Konovalov, S. V., Stolbushkina, O. A., et al. (2009). Evolyuciya poverchnosti razrusheniya alyuminiya, formiruyushcheisya pri polzuchesti materiala s nalozheniyem potencyala (Evolution of the fracture surface of aluminum formed during creep of material with potential imposition). Fizika i chimiya obrabotki materialov (Physics and Chemistry of Material Processing), 5, 80–83.

    Google Scholar 

  52. Osipov, V. G., Drobysheva, E. K., & Ushakov, E. V. (1964). Mикpoмexaнизмы paзpyшeния (Micromechanisms of fracture). Plasticheskaya deformaciya metallov (Plastic deformation of metals) (pp 88–95).

    Google Scholar 

  53. Skal’s’kyi, V. R., & Lyasota, I. M. (2010). Estimation of the heat-affected zone for the electron-beam welding of plates. Materials Science, 46(1), 115–123.

    Google Scholar 

  54. Klein, R. J. (Ed.). (2010). Welding: Processes, quality, and applications. Mechanical engineering theory and applications. Nova Science Pub Inc.

    Google Scholar 

  55. Skalskyi, V. R., & Koval, P. M. (2007). Some methodological aspects of application of acoustic emission. Publishing House Spolom.

    Google Scholar 

  56. Senthilkumar, S., Narayanan, S., & Denis Ashok, S. (2013). Acoustic emission–based monitoring approach for friction stir welding of aluminum alloy AA6063-T6 with different tool pin profiles. Proceedings of the Institution of mechanical engineers Part B Journal of Engineering Manufacture, 227, 407–416.

    Article  CAS  Google Scholar 

  57. Rajaprakash, B. M., Suresha, C.N., Rachappa, & Upadhya, S. (2014). Application of acoustic emission technique for online monitoring of friction stir welding process during welding of AA6061-T6 aluminum alloy. In TMS 2014 143rd Annual Meeting & Exhibition (pp. 731–740). Springer.

    Google Scholar 

  58. Lee, Y.-W., Hossain Md. A. A. M., Hong, S.-T., Yum, Y.-J., & Park, K.-Y. (2011, June). Characterization of friction stir spot welding of aluminum alloys using acoustic emissions. Proceedings of the twenty-first International Offshore and Polar Engineering Conference, Maui, Hawaii, USA.

    Google Scholar 

  59. Venkitakrishnan, P. V., Sinha, P., & Krishnamurthy, R. (2006). Study and analysis of effect of various thermal processes in AA2219 annealed sheet using acoustic emissions. Materials & Design, 27, 770–775.

    Google Scholar 

  60. Gudramovych, V. S., Skalskyi, V. R., & Selivanov, Y. M. (2017). Golografichne ta akustyko-emisiine diagnostuvannya neodnoridnych konstrukcii i materialiv (Holographic and acoustic emission diagnostics of inhomogeneous structures and materials). Prostir-M, Lviv

    Google Scholar 

  61. Rabotnov, Yu. N. (1966). Polzuchest elementov konstrukcii (Creep of structural elements). Nauka.

    Google Scholar 

  62. Vittsel, V. I., & Edsit, N. R. (1977). Vliyaniye temperatury na razrusheniye (Influence of temperature on fracture). In Razrusheniye (Fracture) (Vol. 4, pp. 68–104). Mashynostroyeniye.

    Google Scholar 

  63. Skalskyi, V. R., Matviiv, Y. Y., & Krandinova, T. A. (2011). Metodyka ocinky kharakterystyk povzuchosti materialiv (Methods for assessing the creep characteristics of materials). Mashynoznavstvo (Mechanical Engineering), 9–10(171–172), 26–30.

    Google Scholar 

  64. Andreikiv, O. E., Skal’s’kyi, V. R., Matviiv, Y. Y., & Kradinova, T. (2012). Evaluation of the durability of cracked plates under the conditions of long-term static loading and local creep. Materials Science, 48(1), 36–45.

    Article  Google Scholar 

  65. Andreikiv, O. E., Skal's'kyi, V. R., Matviiv, Y. Y, & Dolins’ka, I. Y. (2013). Micromechanisms and a computational model of growth of low-temperature creep cracks in materials. Materials Science, 49(1), 25–35.

    Google Scholar 

  66. Stepanenko, V. O. (Ed.). (2002). Materialoznavstvo i technologiya konstrukciinykh materialiv (Materials science and technology of structural materials). Lybid.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Stankevych .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skalskyi, V., Nazarchuk, Z., Stankevych, O. (2022). Energy Criterion for Identification of the Types of Material Macrofracture. In: Acoustic Emission. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-031-11291-1_3

Download citation

Publish with us

Policies and ethics