Skip to main content

Current Status of Chromosome-Based Gender Determination in Seabuckthorn

  • Chapter
  • First Online:
The Seabuckthorn Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 195 Accesses

Abstract

Sex chromosomes in plants have gained considerable attention in recent years. Several plants like Rumex, Carica papaya, Cannabis sativa, Salix, and Silene have been investigated and are established as a model system for studying mechanisms of gender determination governed by sex chromosomes, epigenetic and hormonal regulation. Studies on these taxa have highlighted different stages of evolution of sex chromosomes beginning with a sex-linked locus on autosomes to a well-established XY-based system. Yet, these studies do not represent several intermediary stages, highlighting the want of more intensive studies, involving several other unexplored dioecious plant species. Our present understanding suggests that Hippophae rhamnoides, commonly known as seabuckthorn, with its wide distribution and enormous uses, could be one such species that may prove as a suitable model system to understand the evolution of dioecy. The species was hitherto unknown about its sexuality, and recent findings have established that the species harbors subdioecious sexuality. Information on chromosome numbers, ploidy, and karyotyping in the species is staggered, but all have supported the likely involvement of sex chromosomes. However, these studies demonstrate variable somatic chromosome number and karyotype, making it difficult to generalize the occurrence of sex chromosomes in seabuckthorn. Further, some studies have attempted to identify gender-linked markers, which, however, turned out to be limited in their application for their inability to work on populations from diverse geographical regions. Nevertheless, these studies certainly do indicate the presence of dynamic genetic machinery for gender determination in the species. Here, we highlight the current status of ongoing research, targeted largely to understand the basis of gender determination mechanism in seabuckthorn, and discuss the implications of the presence of intermediary subdioecious stages for deciphering the role of sex chromosome through possible molecular cytogenetic approaches.

Manisha and Yash Mangla authors have equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araratian AG (1940) Mix oploidiebei Hyppophaë rhamnoides L. Proc USSR Acad Sci 27:857–861

    Google Scholar 

  • Aryal R, Ming R (2013) Sex determination in flowering plants: papaya as a model system. Plant Sci 217–218:56–62

    PubMed  Google Scholar 

  • Bai QW, Li YX, Gao DS (1989) A preliminary study on the karyotype of Hippophae rhamnoides L. For Sci Technol 11:30–31

    Google Scholar 

  • Bal LM, Meda V, Naik VN, Satya S (2011) Seabuckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res Int 44:1718–1727

    CAS  Google Scholar 

  • Bartish IV, Jeppson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54

    Google Scholar 

  • Boualem A, Fergany M, Fernandez R et al (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321(5890):836–838

    CAS  PubMed  Google Scholar 

  • Caporali E, Spada A, Losa A, Marziani G (2000) The MADS box gene AOM1 is expressed in reproductive meristems and flowers of the dioecious species Asparagus officinalis. Sex Plant Reprod 13:151–156

    CAS  Google Scholar 

  • Chailakhyan MK, Khrianin VN (1987) Influence of environmental factors and nutrition on sex determination in plants (A review). In: Kenneth VT (ed) Sexuality in plants and its hormonal regulation. Springer, New York, NY, pp 16–32

    Google Scholar 

  • Charlesworth D (2016) Plant sex chromosomes. Annu Rev Plant Biol 67:397–420

    CAS  PubMed  Google Scholar 

  • Charlesworth D (2019) Young sex chromosomes in plants and animals. New Phytol 224:1095–1107

    PubMed  Google Scholar 

  • Chatha GS, Bir SS (1988) Cytomixis in some woody species of Indian forests. Proc Indian Sci Congr 75:211–212

    Google Scholar 

  • Chawla A, Stobdan T, Srivastava RB, Jaiswal V, Chauhan RS, Kant A (2015) Sex-biased temporal gene expression in male and female floral buds of seabuckthorn (Hippophae rhamnoides). PLoS ONE 10:e0124890

    PubMed  PubMed Central  Google Scholar 

  • Chen RY (ed) (1993) Chromosome atlas of Chinese fruit trees and their close wild relatives. Chromosome atlas of Chinese principal economic plants

    Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    CAS  PubMed  Google Scholar 

  • Darmer G (1947) Rassenbildungbei Hippophae rhamnoides (Sanddorn). BiolZentralbl 66:166–170

    CAS  Google Scholar 

  • Darmer G (1952) Der Sanddornais Wild- und Kulturpflanze. Leipzig, pp 89

    Google Scholar 

  • Das K, Ganie SH, Mangla Y, Dar T, Chaudhury M, Thakur R, Tandon R, Raina SN, Goel S (2017) ISSR markers for gender identify and genetic diagnosis of Hippophae rhamnoides ssp. turkestanica growing at high altitudes in Ladakh region (Jammu and Kashmir). Protoplasma 254:1063–1077

    CAS  PubMed  Google Scholar 

  • Dempsey RE, Gornall RJ, Bailey JP (1994) Contributions to a cytological catalogue of the British and Irish flora. Watsonia 20:63–66

    Google Scholar 

  • Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE 9:e85118

    PubMed  PubMed Central  Google Scholar 

  • Elena T, Capraru G, Rosu CM, Zamfirache MM, Olteanu Z, Manzu C (2011) Morphometric pattern of somatic chromosomes in three Romanian seabuckthorn genotypes. Caryologia 64:189–196

    Google Scholar 

  • Fraser L, Tsang GK, Datson PM (2009) A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 10:102

    PubMed  PubMed Central  Google Scholar 

  • Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido OY (2015) Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. Genes, Genomes Genet 5:1663–1673

    CAS  Google Scholar 

  • Jadhav MS, Sharma TR (2014) Identification of gender specific DNA markers in seabuckthorn (Hippophae rhamnoides L.). Indian Res J Genet Biotechnol 6:464–469

    Google Scholar 

  • Karlov G, Danilova T, Horlemann C et al (2003) Molecular cytogenetics in hop (Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica 132:185–190

    CAS  Google Scholar 

  • Khattak JZK, Torp AM, Andersen SB (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311–318

    CAS  Google Scholar 

  • Kihara H, Ono T (1923) Cytological studies on Rumex L. Bot Mag 37:84–90

    Google Scholar 

  • Koizumi A, Yamanaka K, Nishihara K, Kazama Y, Abe T, Kawano S (2010) Two separate pathways including SlCLV1, SlSTM and SlCUC that control carpel development in a bisexual mutant of Silene latifolia. Plant Cell Physiol 2:282–293

    Google Scholar 

  • Korekar G, Sharma RK, Kumar R, Meenu BNC, Shrivastava RB, Ahuja PS, Stobdan T (2012) Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotech Lett 34:973–978

    CAS  Google Scholar 

  • Lévêque M, Gorenflot R (1969) Prospections caryologiquesdans la florelittorale du Boulonnais. Bull Bot Soc Northern Fr 22:27–58

    Google Scholar 

  • Li X, Song WQ, Chen RY (1993) Studies of karyotype of some berry plants in North China. J Wuhan Bot Res 11: 289–292

    Google Scholar 

  • Liu Y, Xu B (1988) Karyotype analysis of Chinese seabuckthorn. J Wuhan Bot Res 6:194–197

    Google Scholar 

  • Ma X, Ma XQ, Li N (1990) Chromosome observation of some drug plants in Xinjiang. Xibei Zhiwu Xuebao 10:203–210

    Google Scholar 

  • Mangla Y, Tandon R, Goel S, Raina SN (2013) Structural organization of the gynoecium and pollen tube path in Himalayan sea buckthorn Hippophae rhmanoides (Elaeagnaceae). AoB PLANTS 5(1–11): plt015. https://doi.org/10.1093/aobpla/plt015

  • Mangla Y, Tandon R (2014) Pollination ecology of Himalayan seabuckthorn, Hippophae rhamnoides L. (Elaeagnaceae). Curr Sci 106:1731–1735

    Google Scholar 

  • Mangla Y, Khanduri P, Tandon R (2016) Gender determination mechanisms in plants: foundation for unisexuality. Int J Plant Reprod Biol 8:103–114

    Google Scholar 

  • Mangla Y, Das K, Bali S, Ambreen H, Raina SN, Tandon R, Goel S (2019) Occurrence of subdioecy and scarcity of gender-specific markers reveal an ongoing transition to dioecy in Himalayan seabuckthorn (Hippophae rhamnoides ssp. turkestanica). Heredity 122:120–132

    CAS  PubMed  Google Scholar 

  • Mangla Y, Chaudhary M, Gupta H, Thakur R, Goel S, Raina SN, Tandon R (2015) Facultative apomixis and development of fruit in a deciduous shrub with medicinal and nutritional uses. AoB PLANTS 7(1–12):plv098. https://doi.org/10.1093/aobpla/plv098

  • Mangla Y, Manisha, Goel S, Tandon R (2020) Dynamics of eco-evolutionary forces in shaping dioecy. In: Tandon et al (eds) Plant reproductive ecology: patterns and processes. Springer-India

    Google Scholar 

  • Marks M (1973) A reconsideration of the genetic mechanism for sex determination in Asparagus officinalis. In: Proceeding Eucarpia meeting on Asparagus (Asparagus officinalis L.). Versailles, France, pp 122–128

    Google Scholar 

  • Milewicz M, Sawicki J (2012) Mechanisms of sex determination in plants. Cas Slez Muz Opava (a) 61:123–129

    Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    CAS  PubMed  Google Scholar 

  • Muyle A, Zemp N, Fruchard C et al (2017) Maternal X chromosome upregulation in both sexes initiates dosage compensation evolution. Nature Plants https://doi.org/10.1038/s41477-018-0221

  • Papadopoulou E, Little HA, Hammar SA, Grumet R (2005) Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Reprod 18:131–142

    CAS  Google Scholar 

  • Parrish TL, Koelewijn HP, van Dijk PJ (2004) Identification of a male-specific AFLP marker in a functionally dioecious fig, Ficus fulva Reinw. ex Bl. (Moraceae). Sex Plant Reprod 17:17–22

    CAS  Google Scholar 

  • Persson HA, Nybom H (1998) Genetic sex determination and RAPD marker segregation in the dioecious species sea buckthorn (Hippophae rhamnoides L.). Hereditas 129:45–51

    CAS  Google Scholar 

  • Pogan E, Wcislo H, Jzmailow R, Przywara L (1982) Further studies in chromosome numbers of Polish angiosperms. Part XVI. Acta Biol Cracov Bot 24:159–189

    Google Scholar 

  • Pu X, Li M, Hsu P (1989) A preliminary study on the karyotypes and sex chromosomes of three taxa of Hippophae. In: Hong D (ed) Plant chromosome research 1987. Organizing Committee Sino-Japanese Symposium on Plant Chromosomes, Beijing, pp 317–322

    Google Scholar 

  • Puterova J, Razumova O, Martinek T, Alexandrov O, Divashuk M, Kubat Z et al (2017) Satellite DNA and transposable elements in seabuckthorn (Hippophae rhamnoides), a dioecious plant with small Y and large X chromosomes. Genome Biol Evol 9:97–212

    Google Scholar 

  • Raina SN, Jain S, Sehgal D, Kumar A, Dar TH, Bhat V, Pandey V, Vaishnavi S, Bhargav A, Singh V, Rani V, Tandon R, Temari M, Mahmoudi A (2012) Diversity and relationships of multipurpose seabuckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genet Resour Crop Evol 59:1033–1053

    Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    PubMed  Google Scholar 

  • Rousi A (1965) Observations on the cytology and variation of European and Asiatic populations of Hippophaë rhamnoides. Ann Bot Fenn 2:1–18

    Google Scholar 

  • Rousi A (1971) The genus Hippophaë L. A taxonomic study. Ann Bot Fenn 8:177–227

    Google Scholar 

  • Rousi A, Arohonka T (1980) C-bands and ploidy level of Hippophaë rhamnoides. Hereditas 92:327–330

    Google Scholar 

  • Sharma A, Zinta G, Rana S, Shirko P (2010) Molecular identification of sex in Hippophae rhamnoides L. using isozyme and RAPD markers. For Stud China 12:62–66

    CAS  Google Scholar 

  • Shchapov NS (1979) On the karyology of Hippophae rhamnoides L. Tsitologiya. Genetika 13:45–47

    Google Scholar 

  • Shephard H, Parker J, Darby P, Ainsworth CC (1999) Sex expression in hop (Humulus lupulus L. and H. japonicas Sieb. EtZucc.): floral morphology and sex chromosomes. In: Ainsworth CC (ed) Sex determination in plants. BIOS Scientific Publishers, Oxford, pp 137–148

    Google Scholar 

  • Shephard HL, Parker JS, Darby P, Ainsworth CC (2000) Sexual development and sex chromosomes in hop. New Phytologists 148:397–411

    CAS  Google Scholar 

  • Siljak-Yakovlev S, Benmalek S, Cerbah M, Coba de la Peña T, Bounaga N, Brown S, Sarr A (1996) Chromosomal sex determination and heterochromatin structure in date palm. Sex Plant Reprod 9:127–132

    Google Scholar 

  • Singh MR (1982) Effects of IAA with maleic hydrazide and colchicine on root tip mitosis. Cytologia 47:419–426

    CAS  Google Scholar 

  • Singhal VK, Kaur D, Kumar P (2008) Effect of cytomixis on the pollen size in ‘Seabuckthorn’ (Hippophae rhamnoides L., Elaeagnaceae). Cytologia 73:167–172

    Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    CAS  PubMed  Google Scholar 

  • Sobolewska H (1926) Karjokinezawegetatywnaigeneratywna u Elaeagnaceae. (Cinesesomatiqueetcinese de maturation dans les Elaeagnacees). Acta Soc Bot Pol 4:64–76

    Google Scholar 

  • Song Y, Ma K, Ci D, Chen Q, Tian J, Zhang D (2013) Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576

    CAS  PubMed  Google Scholar 

  • Sousa A, Fuchs J, Renner SS (2017) Cytogenetic comparison of heteromorphic and homomorphic sex chromosomes in Coccinia (Cucurbitaceae) points to sex chromosome turnover. Chromosome Res 25:191–200

    CAS  PubMed  Google Scholar 

  • Sun K, Chen W, Ma R, Chen X, Li A, Ge S (2006) Genetic Variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197

    CAS  PubMed  Google Scholar 

  • Telgmann-Rauber A, Jamsari A, Kinney MS, Pires JC, Jung C (2007) Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol Genet Genomics 278:221–234

    CAS  PubMed  Google Scholar 

  • Tischler G (1936) Pflanzliche Chromosomen-Zahlen. Nachtrag Nr. 2, Teil II. Tabul Biol Period 6:57–115

    Google Scholar 

  • Tischler G (1950) Die Chromosomenzahlen der GefâsspflanzenMitteleuropas. Haag, 263 pp

    Google Scholar 

  • Vyskot B, Araya A, Veuskens J, Negrutiu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239:219–224

    CAS  PubMed  Google Scholar 

  • Wang C, Liu H, Xu S (1990) A preliminary study of the chromosome numbers of two non-leguminous nitrogen-fixing woody plants-Hippophae rhamnoides and Elaeagnus moorcroftii wall liaoning. For Sci Technol 3:3–4

    Google Scholar 

  • Weil C, Martienssen R (2008) Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev 18:188–192

    CAS  PubMed  Google Scholar 

  • Xu WJ, Wang BW, Cui KM (2004) RAPD and SCAR markers linked to sex determination in Eucommiaulmoides Oliv. Euphytica 136:233–238

    CAS  Google Scholar 

  • Zhou W, Wang Y, Zhang G, Luan G, Chen S, Meng J et al (2018) Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers. Molecules 23:1048

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manisha, Mangla, Y., Tandon, R., Goel, S. (2022). Current Status of Chromosome-Based Gender Determination in Seabuckthorn. In: Sharma, P.C. (eds) The Seabuckthorn Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-11276-8_3

Download citation

Publish with us

Policies and ethics