Skip to main content

Genetic Diversity, Evolution, and Biogeography of Seabuckthorn

  • Chapter
  • First Online:
The Seabuckthorn Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Intraspecific genetic diversity is an important characteristic of the evolutionary potential, fitness, and conservation status of any species. Monitoring this characteristic is particularly important in rare, vulnerable, or endangered species with small fragmented populations and in domesticated or cultivated species. Humans have been exploiting seabuckthorn (Hippophae L., Elaeagnaceae) for thousands of years, but its considerable economic potential has only recently been appreciated. Studies of genetic resources in the genus have accumulated valuable information on evolutionary history, biogeography, genetic diversity within populations, population structure, and genes with putative specific adaptive functions in its different species and taxa. The further utilization of genetic resources in seabuckthorn strongly depends on understanding the mechanisms behind genetic patterns in its wild populations and specific evolutionary and ecological mechanisms of adaptations of these populations to local environments. Monitoring and preservation of genetic diversity across the genus have so far been an underappreciated issue, which should be included in further research programs on this plant. Further studies should focus on monitoring genetic diversity in poorly studied taxa, identification of endangered populations under threat of genetic erosion, and on identification of genes controlling important adaptive functions and important agricultural traits. These genes can be a part of genomic regions underlying the adaptation to changing environments, resistance and tolerance to diseases, pests, and abiotic stresses, or biochemical pathways of synthesis of bioactive secondary metabolites with strong potential for local and international marketing. Identification and characterization of these genes can lead to a better understanding of molecular mechanisms of adaptation to past and future climatic fluctuations and environmental modifications. Ultimately, this knowledge will help breeding plants with the desired combination of traits. Specifically, the breeding of varieties of high ecological, medicinal, or nutritional value, adapted to the areas of their cultivation, will be greatly facilitated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Glob Ecol Biogeogr 18:223–239

    Article  Google Scholar 

  • Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM Jr, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Barnosky A, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earths sixth mass extinction already arrived? Nature 471:51–57. https://doi.org/10.1038/nature09678

    Article  CAS  PubMed  Google Scholar 

  • Bartish GI, Jeppsson N, Bartish IV, Nybom H (2000a) Assessment of genetic diversity using RAPD analysis in a germplasm collection of seabuckthorn. Agric Food Sci Finland 9:279–289

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H (2000b) Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Pl Syst Evol 225:85–101

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54

    Google Scholar 

  • Bartish IV, Kadereit JW, Comes HP (2006) Late quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Mol Ecol 15:4065–4083

    Article  CAS  PubMed  Google Scholar 

  • Bartish IV, Ozinga WA, Bartish MI, Wamelink GWW, Hennekens SM, Yguel B, Prinzing A (2020) Anthropogenic threats to evolutionary heritage of angiosperms in the Netherlands through increase in high-competition environments. Conserv Biol 34(6):1536–1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartish IV, Jeppsson N (2003) Application of molecular markers to study the systematics, phylogeny, biogeography, genetic diversity and population genetics of Hippophae L. In: Singh V et al (eds) Seabuckthorn (Hippophae L.): a multipurpose wonder plant, vol 1. Botany, harvesting and processing technologies. New Delhi: Indus, pp 64‒71 (ISBN 8173871566)

    Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by RAPD markers. Mol Eco l8:791‒802

    Google Scholar 

  • Bartish IV (2016) An ancient medicinal plant at the crossroads of modern agriculture, ecology, and genetics: genetic resources and biotechnology of seabuckthorn (Hippophae, Elaeagnaceae). In: Rajpal VR, Rao SR, Raina SN (eds) Gene pool diversity and crop improvement. Book series: sustainable development and biodiversity (Ramawat KG, ed) volume 10. Springer, Switzerland. pp 415‒446. (ISBN: 978-3-319-27094-4. https://doi.org/10.1007/978-3-319-27096-8)

  • Bartish IV, Swenson U (2004) Elaeagnaceae. In: Kubitzki K (ed) The families and genera of vascular plants Springer. Berlin, Heidelberg, New York, pp 131‒134

    Google Scholar 

  • Beichman AC, Huerta-Sanchez E, Lohmueller KE (2018) Using genomic data to infer historic population dynamics of nonmodel organisms. Ann Rev Ecol Evol Syst 49:433–456

    Article  Google Scholar 

  • Biltekin D (2010) Vegetation and climate of North anatolian and North aegean region since 7 Ma according to pollen analysis. Ph.D. thesis, Université Claude Bernard-Lyon I and Istanbul Technical University. http://tel.archives-ouvertes.fr/docs/00/72/08/92/PDF/TH2010_Biltekin_Demet.pdf

  • Birky CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobrov EG (1962) Review on genus Myricaria Desv. and its history. Botanicheskiy Zhurnal 52:924–936 (in Russian with English abstract)

    Google Scholar 

  • Bocquet-Appel JP (2008) Explaining the Neolithic demographic transition. The Neolithic demographic transition and its consequences, pp 35–55. https://doi.org/10.1007/978-1-4020-8539-0_3

  • Bombi P, Salvi D, Shuuya T, Vignoli L, Wassenaar T (2020) Very high extinction risk for Welwitschia mirabilis in the northern Namib desert. BioRxiv: 2020.05.05.078253. https://doi.org/10.1101/2020.05.05.078253

  • Carstens BC, Richards CL (2007) Integrating coalescent and ecological niche modelling in comparative phylogeography. Evolution 61:1439–1454

    Article  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci USA 114:E6089–E6096. https://doi.org/10.1073/pnas.1704949114

  • Charlesworth D, Morgan MT, Charlesworth B (1990) Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44:1469–1489

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Zhang XZ (2017) Characterization of the complete chloroplast genome of seabuckthorn (Hippophae rhamnoides L.). Cons Genet Res 9:623–626

    Article  Google Scholar 

  • Chen G, Wang Y, Zhao C, Korpelainen H, Li C (2008) Genetic diversity of Hippophae rhamnoides populations at varying altitudes in the Wolong natural reserve of China as revealed by ISSR markers. Silvae Genet 57:29–36

    Article  Google Scholar 

  • Chen W, Su X, Zhang H, Sun K, Ma R, Chen X (2010) High genetic differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet plateau. Biochem Genet 48:565–576

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Sun K, Wen HY, Jia DR, Liu JQ (2009) Maternal divergence and phylogeographical relationships between Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Zhiwu Shengtai Xuebao 33:1–11 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Chowdhury MA, Jana S, Schroeder WR (2000) Phenotypic diversity in four woody species on the Canadian prairies. Can J Plant Sci 80:137–142

    Article  Google Scholar 

  • Congiu L, Chicca M, Cella R, Rossi R, Bernacchia G (2000) The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Begueria S, Casas AM, Igartua E (2019) Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. MolEcol 28:1994–2012

    Google Scholar 

  • Diao S, Zhang G, He C, Duan A, Zhang J (2020) The complete chloroplast genome sequence of Hippophae rhamnoides subsp. sinensis. Mitochondrial DNA Part B 5:982–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size—implications for plant conservation. Ann Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ercisli S, Orhan E, Yildirim N, Agar G (2008) Comparison of seabuckthorn genotypes (Hippophae rhamnoides L.) based on RAPD and FAME data. Turkish J Agric for 32:363–368

    CAS  Google Scholar 

  • Erickson DL, Fenster CB, StenÅ™ien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522

    Article  CAS  PubMed  Google Scholar 

  • Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R, Wishart D, Weselake RJ, Krishna P (2012) Fatty acid composition of developing seabuckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 7:e34099

    Google Scholar 

  • Fu YX, Li WH (1999) Coalescing into the 21st century: an overview and prospects of coalescent theory. Theoret Pop Biol 56:1–10

    Article  CAS  Google Scholar 

  • Gams H (1943) Der Sanddorn (Hippophae rhamnoides L.) im Alpengebiet. Beihefte Zum Botanischen Centralblatt, Abteilung B 2:68–96

    Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2012) Expressed sequence tag based identification and expression analysis of some cold inducible elements in seabuckthorn (Hippophae rhamnoides L.). Plant Physiol Biochem 51:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Chaudhary S, Jain M, Purty RS, Sharma PC (2013) Optimization of de novo short read assembly of seabuckthorn (Hippophae rhamnoides L.) transcriptome. PLoS ONE 8:7

    Google Scholar 

  • Godbout J, Beaulieu J, Bousquet J (2010) Phylogeographic structure of jack pine (Pinus banksiana; Pinaceae) supports the existence of a coastal glacial refugium in northeastern North America. Am J Bot 97:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Grivet D, Deguilloux MF, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15:4085–4093

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland MA, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Series B 351:1291–1298

    Article  Google Scholar 

  • Hawtin G, Iwanaga M, Hodgkin T (1997) Genetic resources in breeding for adaptation. Adaptation in plant breeding. Developments in Plant Breeding. Dordrecht, Kluwer Academic Publishers

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549

    Article  CAS  PubMed  Google Scholar 

  • Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380

    Article  PubMed  Google Scholar 

  • Höhn M, Szelényi M, Halász J (2019) Low level of genetic variation and signs of isolation in the native Hungarian seabuckthorn population compared to cultivated specimens. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:699–705

    Article  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Huang Q (1995) A review of seabuckthorn breeding in China. In: Proceedings of international workshop on Seabuckthorn. Beijing, China, pp 111–117

    Google Scholar 

  • Hyvönen J (1996) On phylogeny of Hippophae (Elaeagnaceae). Nordic J Bot 16:51–62

    Article  Google Scholar 

  • Ickert Bond SM, Renner SS (2016) The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. J Syst Evol 54:1–16. https://doi.org/10.1111/jse.12190

    Article  Google Scholar 

  • IUCN (2016) https://web.archive.org/web/20160303202630/, https://www.iucnredlist.org/static/categories_criteria_3_1

  • Jain A, Ghangal R, Grover A, Raghuvanshi S, Sharma PC (2010) Development of EST-based new SSR markers in seabuckthorn. Physiol Mol Biol Plants 16:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain A, Chaudhary S, Sharma PC (2014) Mining of microsatellites using next generation sequencing of seabuckthorn (Hippophae rhamnoides L.) transcriptome. Physiol Mol Biol Plants 20:115–123

    Article  CAS  PubMed  Google Scholar 

  • Jeppson N, Bartish IV, Persson HA (1999) DNA analysis as a tool in seabuckthorn breeding. In: Janick J (ed) Perspectives on new crops and new uses). ASHS Press, Alexandria, pp 338–341

    Google Scholar 

  • Jia DR, Bartish IV (2018) Climatic changes and orogeneses in the late miocene of Eurasia: the main triggers of an expansion at a continental scale? Fr Pl Sci 9:1400. https://doi.org/10.3389/fpls.2018.01400

    Article  Google Scholar 

  • Jia DR, Liu TL, Wang LY, Zhou DW, Liu JQ (2011) Evolutionary history of an alpine shrub Hippophae tibetana (Elaeagnaceae): allopatric divergence and regional expansion. Biol J Linn Soc 102:37–50

    Article  Google Scholar 

  • Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012) Out of the Qinghai-Tibetan plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133

    Article  PubMed  Google Scholar 

  • Jia DR, Wang YJ, Liu TL, Wu GL, Kou YX, Cheng K, Liu JQ (2016) Diploid hybrid origin of Hippophae gyantsensis (Elaeagnaceae) in the western Qinghai-Tibet Plateau. Biol J Linn Soc 117:658–671

    Article  Google Scholar 

  • Jia DR (2013) Influence of climatic fluctuations in Neogene on evolution of ecologically diverse plant genus: an example of Hippophae L. (Elaeagnaceae). Ph.D. thesis, Charles University in Prague, Czech Republic https://is.cuni.cz/webapps/zzp/detail/99009/?lang=en

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinina IP, Panteleyeva YI (1987) Breeding of seabuckthorn in the Altai. In: Advances in agricultural science. Moscow, Russia (in Russian)

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge. ISBN 978-0-521-23109-1

    Google Scholar 

  • Kou YX, Wu YX, Jia DR, Li ZH, Wang YJ (2014) Range expansion, genetic differentiation, and phenotypic adaption of Hippopha neurocarpa (Elaeagnaceae) on the Qinghai-Tibet Plateau. J Syst Evol 52:303–312

    Article  Google Scholar 

  • Leakey R, Lewin R (1992) The sixth extinction: patterns of life and the future of humankind. Doubleday. ISBN-10: 0385424973

    Google Scholar 

  • Lee RD (1987) Population dynamics of humans and other animals. Demography 24:443–465. https://doi.org/10.2307/2061385

    Article  CAS  PubMed  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010

    Article  PubMed  PubMed Central  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Li H, Ruan CJ, Texeira da Silva JA (2009) Identification and genetic relationship based on ISSR analysis in a germplasm collection of seabuckthorn (Hippophae L.) from China and other countries. Sci Hortic 123:263–271

    Article  CAS  Google Scholar 

  • Li H, Ruan C, Ding J, Li J, Wang L, Tian X (2020) Diversity in seabuckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers. PLoS One 15:e0230356

    Google Scholar 

  • Lian YS, Chen XL, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23

    Google Scholar 

  • Lian YS, Chen XL, Sun K, Ma R (2003a) A new subspecies of Hippophae (Elaeagnaceae) from China. Novon 13:200–202

    Article  Google Scholar 

  • Lian YS, Chen XL, Sun K, Ma R (2003b) Clarification of the systematic position of Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 142:425–430

    Article  Google Scholar 

  • Lian YS, Chen XL (1993) Study on the germplasm resource of the genus Hippophae L. In: International symposium on seabuckthorn (Hippophae rhamnoides L.). Novosibirsk, Russia, pp 157–161

    Google Scholar 

  • Lian YS, Chen XL, Sun K (1995) New discoveries of the genus Hippophae L. In: Proceedings of international workshop on seabuckthorn. China Science and Technology Press, Beijing, pp 60–66

    Google Scholar 

  • Liu SW, He TN (1978) The genus Hippophae from Qing-Zang plateau. Acta Phytotax Sin 16:106–108 (in Chinese)

    Google Scholar 

  • Liu R, Yang J, Gao L (2007) ISSR analysis of Chinese seabuckthorn and Russian seabuckthorn. Acta Bot Boreal Occident Sin 27:671–677

    CAS  Google Scholar 

  • Liu JQ, Sun YS, Ge XJ, Gao LM, Qiu YX (2012) Phylogeographic studies of plants in China: advances in the past and directions in the future. J Syst Evol 50:267–275

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14:513–524

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Meng LH, Yang HL, Wu GL, Wang YJ (2008) Phylogeography of Hippophae neurocarpa (Elaeagnaceae) inferred from the chloroplast DNA trnL-F sequence variation. J Syst Evol 46:32–40

    Google Scholar 

  • Murray KD, Janes JK, Jones A, Bothwell HM, Andrew RL, Borevitz JO (2019) Landscape drivers of genomic diversity and divergence in woodland Eucalyptus. Mol Ecol 28:5232–5247

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Krutovskii KV, Mueller M, Gailing O, Khan AA, Buerkert A, Wiehle M (2018) Morphological and genetic diversity of seabuckthorn (Hippophae rhamnoides L.) in the Karakoram mountains of Northern Pakistan. Diversity 10:76–99. https://doi.org/10.3390/d10030076

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Takahata N (1993) Effective population size, genetic diversity, and coalescence time in subdivided populations. J Mol Evol 37:240–244

    Article  CAS  PubMed  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402

    Article  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Persp Pl Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Nybom H, Bartish IV, Garkava-Gustavsson L, Persson H, Werlemark G, Esselink D (2003) Evaluating genetic resources in minor fruits. In: Janick J (ed) Genetics and breeding of tree fruits and nuts. International Social Horticulture Science, Leuven, pp 81–94

    Google Scholar 

  • Olmstead RG (1990) Biological and historical factors influencing genetic diversity in the Scutellaria-Angustifolia complex (Labiatae). Evolution 44:54–70

    Article  PubMed  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22:5983–5999

    Article  PubMed  Google Scholar 

  • Park B, Donoghue MJ (2019) Phylogeography of a widespread eastern North American shrub, Viburnum lantanoides. Am J Bot 106:389–401

    Article  CAS  PubMed  Google Scholar 

  • Peterson A, Bartish IV, Peterson J (2002) Genetic structure detected in a small population of the endangered plant Anthericum liliago (Anthericaceae) by RAPD analysis. Ecography 25:677–684

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Phillips PC (2005) Testing hypotheses regarding the genetics of adaptation. Genetica 123:15–24

    Article  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752. https://doi.org/10.1126/science.1246752

    Article  CAS  PubMed  Google Scholar 

  • Prunier J, Giguere I, Ryan N, Guy R, Soolanayakanahally R, Isabel N, MacKay J, Porth I (2019) Gene copy number variations involved in balsam poplar (Populus balsamifera L.) adaptive variations. Mol Ecol 28:1476–1490

    Article  CAS  PubMed  Google Scholar 

  • Puterova J, Razumova O, Martinek T, Alexandrov O, Divashuk M, Kubat Z, Hobza R, Karlov G, Kejnovsky E (2017) Satellite DNA and transposable elements in seabuckthorn (Hippophae rhamnoides), a dioecious plant with small Y and large X chromosomes. Genome Biol Evol 9:197–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin HN, Gilbert MG (2007) Elaeagnaceae. In: Wu ZY, Raven PH (eds) Flora of China. Beijing and St. Louis: Science Press and Missouri Botanical Garden, vol 13, pp 251–273

    Google Scholar 

  • Qiong L, Zhang W, Wang H, Zeng L, Birks HJB, Zhong Y (2017) Testing the effect of the Himalayan mountains as a physical barrier to gene flow in Hippophae tibetana Schlect. (Elaeagnaceae). Plos One 12:e0172948. https://doi.org/10.1371/journal.pone.0172948

  • Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogen Evol 59:225–244

    Article  Google Scholar 

  • Raina SN, Jain S, Sehgal D, Kumar A, Dar TH, Bhat V, Pandey V, Vaishnavi S, Bhargav A, Singh V, Rani V, Tandon R, Tewari M, Mahmoudi A (2012) Diversity and relationships of multipurpose seabuckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genet Resour Crop Evol 59:1033–1053

    Article  Google Scholar 

  • Ran JH, Shen TT, Wang MM, Wang XQ (2018) Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc R Soc Biol Sci B 285:1881

    Google Scholar 

  • Rifkin JL, Castillo AS, Liao IT, Rausher MD (2019) Gene flow, divergent selection and resistance to introgression in two species of morning glories (Ipomoea). Mol Ecol 28:1709–1729

    Article  PubMed  Google Scholar 

  • Rousi A (1971) The genus Hippophae L: a taxonomic study. Ann Bot Fenn 8:177–227

    Google Scholar 

  • Ruan CJ (2006) Genetic relationships among seabuckthorn varieties from China, Russia and Mongolia using AFLP markers. J Hortic Sci Biotechnol 81:409–414

    Article  Google Scholar 

  • Ruan CJ, Li DQ (2005) AFLP fingerprinting analysis of some cultivated varieties of seabuckthorn (Hippophae rhamnoides). J Genet 84:311–316

    Article  CAS  PubMed  Google Scholar 

  • Ruan CJ, Qin P, Zheng JW, He ZX (2004) Genetic relationships among some cultivars of seabuckthorn from China, Russia and Mongolia based on RAPD analysis. Sci Hortic 101:417–426

    Article  CAS  Google Scholar 

  • Ruan CJ, Li H, Mopper S (2009) Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in seabuckthorn. Mol Breed 24:255–268

    Article  CAS  Google Scholar 

  • Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61:289–313

    Article  PubMed  Google Scholar 

  • Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Schmid R, Farjon A (2013) Sequoiadendron giganteum. The IUCN red list of threatened species 2013. International Union for Conservation of Nature, Gland, Switzerland. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34023A2840676.en

  • Schoen DJ, Brown AH (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoville SD, Bonin A, Fransois O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Ann Rev Ecol Evol Syst 43:23–43

    Article  Google Scholar 

  • Schrader L, Schmitz J (2019) The impact of transposable elements in adaptive evolution. Mol Ecol 28:1537–1549

    Article  PubMed  Google Scholar 

  • Schrider DR, Shanku AG, Kern AD (2016) Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:1207–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Servettaz C (1908) Monographie der Elaeagnaceae. Beihefte Zum Botanischen Central Blatt 25:1–420

    Google Scholar 

  • Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621

    Article  PubMed  Google Scholar 

  • Shah AH, Ahmad SD, Khaliq I, Batool F, Hassan L, Pearce RS (2009) Evaluation of phylogenetic relationship among seabuckthorn (Hippophae rhamnoides L. ssp. turkestanica) wild ecotypes from Pakistan using amplified fragment length polymorphism (AFLP). Pak J Bot 41:2419–2426

    CAS  Google Scholar 

  • Sheng H, An L, Chen T, Xu S, Liu G, Zheng X, Pu L, Liu Y, Lian Y (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37

    Article  CAS  Google Scholar 

  • Simon-Gruita A, Tataru E, Constantin N, Cornescu DG, Pavlusenco CE, Rati V, Rati L, Stoian V (2012) The assessment of the genetic diversity of seabuckthorn populations from Romania using RAPD markers. Rom Biotech Lett 17:7749–7756

    Google Scholar 

  • Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Mol Ecol 15:1827–1840

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Srihari JM, Verma B, Kumar N, Chahota RK, Singh V, Rathour R, Singh SK, Sharma SK, Sharma TR (2013) Analysis of molecular genetic diversity and population structure in seabuckthorn (Hippophae spp L.) from north-western Himalayan region of India. J Medic Pl Res 7:3183–3196

    Google Scholar 

  • Stankowski S, Chase MA, Fuiten AM, Rodrigues MF, Ralph PL, Streisfeld MA (2019) Widespread selection and gene flow shape the genomic landscape during a radiation of monkeyflowers. PLoS Biol 17:e3000391

    Article  PubMed  PubMed Central  Google Scholar 

  • Storz JF (2005) Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 14:671–688

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Pl Syst Evol 235:121–134

    Article  CAS  Google Scholar 

  • Sun K, Ma R, Chen X, Li C, Ge S (2003) Hybrid origin of the diploid species Hippophae goniocarpa evidenced by the internal transcribed spacers (ITS) of nuclear rDNA. Belgian J Bot 136:91–96

    Google Scholar 

  • Sun K, Chen W, Ma R, Chen X, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197

    Article  CAS  PubMed  Google Scholar 

  • Swenson U, Bartish IV (2002) Taxonomic synopsis of Hippophae (Elaeagnaceae). Nord J Bot 22:369–374

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang CQ, Yang Y, Ohsawa M, Yi SR, Momohara A, Su WH, Wang HC, Zhang ZY, Peng MC, Wu ZL (2012) Evidence for the persistence of wild Ginkgo biloba (Ginkgoaceae) populations in the Dalou Mountains, southwestern China. Am J Bot 99:1408–1414

    Article  PubMed  Google Scholar 

  • The Angiosperm Phylogeny, Group MW, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linnean Soc 181:1‒20

    Google Scholar 

  • Tian CJ, Lei YD, Shi H, Nan P, Chen JK, Zhong Y (2004a) Genetic diversity of seabuckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New for 27:229–237

    Article  Google Scholar 

  • Tian CJ, Nan P, Shi SH, Chen JK, Zhong Y (2004b) Molecular genetic variation in Chinese populations of three subspecies of Hippophae rhamnoides. Biochem Genet 42:259–267

    Article  CAS  PubMed  Google Scholar 

  • Trajkovski V, Jeppsson N (1999) Domestication of seabuckthorn. Bot Lithuanica Suppl. 2:37–46

    Google Scholar 

  • Tsvelev NN (2002) On the genera Elaeagnus and Hippophae (Elaeagnaceae) in Russia and adjacent states. Botanicheskiy Zhurnal 87:74–86 (in Russian with English abstract)

    Google Scholar 

  • Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Tr Ecol Evol 28:696–704

    Article  CAS  Google Scholar 

  • van der Werf HMG, Petit J (2002) Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agricult Ecosyst Environ 93:131–145

    Article  Google Scholar 

  • van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI technical bulletin no. 3. International plant genetic resources institute, Rome, Italy. ISBN 92-9043-454-6

    Google Scholar 

  • Van Jaarsveld E (2000) Welwitschia mirabilis. Veld Flora 86:176–179

    Google Scholar 

  • Wakeley J (2000) The effects of subdivision on the genetic divergence of populations and species. Evolution 54:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Wang AL, Schluetz F, Liu JQ (2008a) Molecular evidence for double maternal origins of the diploid hybrid Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 156:111–118

    Article  Google Scholar 

  • Wang AL, Zhang Q, Wan DS, Yang YZ, Liu JQ (2008b) Nine microsatellite DNA primers for Hippophae rhamnoides ssp sinensis (Elaeagnaceae). Conserv Genet 9:969–971

    Article  CAS  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Qiong LA, Sun K, Lu F, Wang Y, Song Z, Wu Q, Chen J, Zhang W (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan plateau. Mol Ecol 19:2964–2979

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang H, Peng S, Korpelainen H (2011) Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers. Plant Syst Evol 295:97–107

    Article  Google Scholar 

  • Wang H, Liu H, Yang M, Bao L, Ge J (2014) Phylogeographic study of Chinese seabuckthorn (Hippophae rhamnoides subsp. sinensis Rousi) reveals two distinct haplotype groups and multiple microrefugia on the Qinghai-Tibet plateau. Ecol Evol 4:4370–4379

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Weising K, Nybom H, Wolff K, Meyer W (1994) DNA fingerprinting in plants and fungi. CRC Press, Boca Raton

    Google Scholar 

  • Whitlock MC (2011) G’st and D do not replace Fst. Mol Ecol 20:1083–1091

    Article  PubMed  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Tr Ecol Evol 28:199–204

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao YM, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164

    Article  Google Scholar 

  • Zhang SD, Soltis DE, Yang Y, Li DZ, Yi TS (2011) Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol Phylogenet Evol 60:21–28 https://doi.org/10.1016/j.ympev.2011.04.008

  • Zhao C, Chen G, Wang Y, Korpelainen H, Li C (2007) Genetic variation of Hippophae rhamnoides populations at different altitudes in the wolong nature reserve based on RAPDs. Chin J Appl Environ Biol 13:753–758

    CAS  Google Scholar 

  • Zubarev YA, Gunin A, Oderova EV (2014) Characteristics of Russian sea bukthorn (Hippophae rhamnoides subsp. mongolica) varieties. In: Singh V (ed) Seabuckthorn (Hippophae L.) a multipurpose wonder plant, vol IV: emerging trends in research and technologies. Daya Publishing House, Astral International Pvt. Ltd., New Dehli, pp 89–98

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support by the scientific exchange program of academies of sciences of Czech Republic and India and for kind personal assistance by Prof. Soom Nath Raina of field trips in 2013 by Igor V. Bartish and Rakesh Thakur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Bartish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartish, I.V., Thakur, R. (2022). Genetic Diversity, Evolution, and Biogeography of Seabuckthorn. In: Sharma, P.C. (eds) The Seabuckthorn Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-11276-8_2

Download citation

Publish with us

Policies and ethics