Skip to main content

Mining of Microsatellites and Transcription Factors in Seabuckthorn (Hippophae Sp.) Transcriptomes

  • Chapter
  • First Online:
The Seabuckthorn Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 174 Accesses

Abstract

Seabuckthorn (Hippophae Sp.), a medicinal plant species, is known for long for its multifarious nutritional, medicinal, and ecological properties. Limited attempts towards the characterization of the genome and transcriptome of this valuable plant continue to exist. Since traditional random genomic microsatellites markers are expensive and not reproducible over a wide range of populations, genic markers have now become popular among researchers owing to their ample availability and efficiency, and rapid screening. Therefore, inclination towards in silico mining of microsatellites has recently become popular and feasible exploiting readily available genomic and transcriptome sequences in the public domain, and a variety of computational tools. Moreover, the study of transcription factors for the determination of their role in mechanisms involved in developmental processes and responses towards environmental stresses has become an area of contemporary research. With the advent of the high-throughput technology, there has been a revolutionary development in the field of transcriptome sequencing, including seabuckthorn also in recent years. In the present chapter, we have attempted to document the developments and techniques used for NGS-based transcriptome profiling in seabuckthorn. Finally, we have discussed the mining of microsatellite and transcription factors in seabuckthorn transcriptome assembly. The seabuckthorn transcriptome data could further be exploited to isolate other sequence resources like miRNAs and augment the microsatellite marker resources for diverse applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angellotti MC, Bhuiyan SB, Chen G, Wan XF (2007) CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Res 35:W132-136

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal A, Salaria M, Sharma T, Stobdan T, Kant A (2018) Comparative de novo transcriptome analysis of male and female seabuckthorn. 3 Biotech 8(2):1–15

    Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Caudy M, Vässin H, Brand M, Tuma R, Jan LY, Jan YN (1988) Daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaetescute complex. Cell 55:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Sharma PC (2015) DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.). PLoS One 10(3):e0121982

    Google Scholar 

  • Chaudhary P, Sharma PC (2022) Distribution of simple sequence repeats, transcription factors, and differentially expressed genes in the NGS-based transcriptome of male and female seabuckthorn (Hippophae salicifolia). J Mol Struct. https://doi.org/10.1080/07391102.2022.2034669

    Article  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–12

    Article  Google Scholar 

  • Ding J, Ruan C, Du W, Guan Y (2019) RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. BMC Plant Biol 19(1):1–18

    Article  Google Scholar 

  • Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R, Wishart D, Weselake RJ, Krishna P (2012a) Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 7(4):e34099

    Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Raghuvanshi S, Chand Sharma P (2009) Isolation of good quality RNA from a medicinal plant seabuckthorn, rich in secondary metabolites. Plant Physiol Biochem 47(11–12):1113–1115

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2012) Expressed sequence tag-based identification and expression analysis of some cold inducible elements in seabuckthorn (Hippophae rhamnoides L.). Plant Physiol Biochem 51:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2008) Exploring seabuckthorn genome using molecular tools. In: Dwivedi SK, Perimalazagan T, Singh SB, Ahmed Z (eds) Seabuckthorn the wonder plant. SSPH Publishers Delhi, pp 347–371

    Google Scholar 

  • Ghangal R, Chaudhary S, Jain M, Purty RS, Sharma PC (2013) Optimization of De Novo short read assembly of seabuckthorn (Hippophae rhamnoides L.) transcriptome. PLoS ONE 8(8):e72516

    Google Scholar 

  • Grover A, Sharma PC (2011) Is spatial occurrence of microsatellites in the genome a determinant of their function and dynamics contributing to genome evolution? Curr Sci 100:859–869

    CAS  Google Scholar 

  • Guo SG, Zheng, Y Joung JG, Liu SQ, Zhang ZH, Crasta OR, Sobral BW, Xu Y, Huang S (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11:384

    Google Scholar 

  • Gupta SM, Ahmed Z, Kumar N (2009) Isolation of cDNA fragments of glycerol-3-phosphate acyltransferase gene from seabuckthorn. Def Sci J 59:147–151

    Article  CAS  Google Scholar 

  • Jain M (2011) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genomics 11:63–70

    Article  PubMed  Google Scholar 

  • Jain A, Ghangal R, Grover A, Raghuvanshi S, Sharma PC (2010) Development of EST-based new SSR markers in seabuckthorn. Physiol Mol Biol Plants 16:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain A, Chaudhary S, Sharma PC (2014) Mining of microsatellites using next generation sequencing of seabuckthorn (Hippophae rhamnoides L.) transcriptome. Physiol Mol Biol Plants 20(1):115–123

    Google Scholar 

  • Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acid Res 45:D1040–D1045

    Article  CAS  PubMed  Google Scholar 

  • Kalia RK, Singh R, Rai MK, Mishra GP, Singh SR, Dhawan AK (2011) Biotechnological interventions in sea buckthorn (Hippophae L.): Current status and future prospects. Trees—Struct Funct 25(4):559–575

    Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang D (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acid Res 33(2–1):W677–W680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozorova O, Hirst M, Marra MA (2009) Application of new sequencing technologies for transcriptomics analysis. Annu Rev Genomics Hum Genet 10:135–151

    Article  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  • Riaño-Pachón DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan CJ, Rumpunen K, Nybom H (2013) Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn. Crit Rev Biotechnol 33:126–144

    Article  CAS  PubMed  Google Scholar 

  • Tang P, Zhang Q, Yao X (2017) Comparative transcript profiling explores differentially expressed genes associated with sexual phenotype in kiwifruit. PLoS ONE 12:e0180542

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur V, Varshney R (2010) Challenges and strategies for next generation sequencing (NGS) data analysis. J Comput Sci Syst Biol 3:040–042

    Article  Google Scholar 

  • Thiel T, Beier S, Münch T, Scholz U, MascherM (2003) MISA—microsatellite identification tool. Bioinformatics 33(16):2583–2585

    Google Scholar 

  • Tóth G, Gáspári Z, Jurka J (2000) Microsatellite in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi S (2004) Microsatellite (SSRs): puzzles within puzzles. Indian J Biotechnol 3:331–347

    CAS  Google Scholar 

  • Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing (NGS) technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Zhang Q, Wan D, Yang Y, Liu J (2008) Nine microsatellite DNA primers for Hippophae rhamnoides ssp. sinensis (Elaeagnaceae). Conserv Genet 123:635–647

    Google Scholar 

  • Wang Y, Yan C, Zou B, Wang C, Xu W, Cui C, Qu S (2019) Morphological, transcriptomic and hormonal characterization of trimonoecious and subandroecious Pumpkin (Cucurbita maxima) suggests important roles of ethylene in sex expression. Int J Mol Sci 20:3185. https://doi.org/10.3390/ijms20133185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye G, Ma Y, Feng Z, Zhang X (2018) Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoides subsp. sinensis) by RNA-Seq. PLoS ONE 13(8):e020221

    Google Scholar 

  • Zhang JS, Boualem A, Bendahmane A, Ming R (2014) Genomics of sex determination. Curr Opin Plant Biol 18:110–116

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang T, Liu J, Zhang J, He C (2018) Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO2 levels in two sea buckthorn cultivars. Gene 660:120–127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, P., Sharma, P.C. (2022). Mining of Microsatellites and Transcription Factors in Seabuckthorn (Hippophae Sp.) Transcriptomes. In: Sharma, P.C. (eds) The Seabuckthorn Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-11276-8_12

Download citation

Publish with us

Policies and ethics