Skip to main content

Contrasting Diffusive Methane Emission from Two Closely Situated Aquaculture Ponds of Varying Salinity Situated in a Wetland of Eastern India

  • Chapter
  • First Online:
Fluvial Systems in the Anthropocene

Abstract

Inland aquaculture practice is becoming popular throughout the world to suffice the increasing protein demand of the growing population. Aquaculture ponds in general emit methane (CH4) towards the atmosphere. However, available data are scarce from India, where the number of aquaculture plots is growing at a fast pace. We measured the partial pressure of CH4 in surface water [pCH4(w)], the atmosphere-pond CH4 fluxes, and several relevant biogeochemical parameters in sewage–fed freshwater (FWP) and oligohaline (OHP) aquaculture ponds situated in an eastern Indian wetland. We hypothesized that pCH4(w) and the atmosphere-pond CH4 effluxes would significantly vary between FWP and OHP as salinity plays a crucial role in regulating the methanogens in any water column. Measurements were carried out in both FWP and OHP throughout an annual cycle. FWP and OHP emitted CH4 at the rate of 22.4 ± 16.2 mg m−2 h−1 and 13.4 ± 13.6 mg m−2 h−1, respectively. Apart from low salinity, turbidity was higher in FWP, which in turn led to reduced photosynthetic activities and lower dissolved oxygen levels compared to OHP. pH was also substantially lower in FWP compared to OHP. More anaerobic and low pH conditions in FWP compared to OHP favored methanogenic activities and methane oxidation was discouraged, which led to higher atmosphere-pond CH4 fluxes from FWP compared to OHP. However, both FWP and OHP exhibited annual mean CH4 effluxes much higher than the efflux rates observed in most of the Chinese aquaculture ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyemi, S. O., Bankole, N. O., Adikwu, A. I., & Akumbo, P. M. (2009). Age growth mortality of some commercially important fish species in Gbedikere. Rivers, 2, 45–51.

    Google Scholar 

  • Adhikari, S., Lal, R., & Sahu, B. C. (2012). Carbon sequestration in the bottom sediments of aquaculture ponds of Orissa India. Ecological Engineering, 47, 198–202.

    Article  Google Scholar 

  • Aich, A., Chakraborty, A., Sudarshan, M., Chattopadhyay, B., & Mukhopadhyay, S. K. (2012). Study of trace metals in Indian major carp species from wastewater–fed fishponds of East Calcutta Wetlands. Aquaculture Research, 43, 53–65.

    Article  Google Scholar 

  • Alagarswamy, K. (1995). Regional study and workshop on the environmental assessment and management of shrimp farming. Organized by Food and Agriculture Organisation and Network of Aquaculture Centres in Asia–Pacific (NACA), 21–26.

    Google Scholar 

  • APHA. (2005). Standard method for the examination of water and waste water. American Public Health Association, 20th ed., p. 541.

    Google Scholar 

  • Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. Sci, 331, 50.

    Article  CAS  ADS  Google Scholar 

  • Boyd, C. E., Wesley Wood, C., Chaney, P. L., & Queiroz, J. F. (2010). Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 158, 2537–2540.

    Article  CAS  PubMed  Google Scholar 

  • Bunting, S. W., Kundu, N., & Ahmed, N. (2017). Evaluating the contribution of diversified shrimp–rice agroecosystems in Bangladesh and West Bengal India to social–ecological resilience. Ocean and Coastal Management, 148, 63–74.

    Article  Google Scholar 

  • Bunting, S. W., Pretty, J., & Edwards, P. (2010). Wastewater–fed aquaculture in the East Kolkata Wetlands India: Anachronism or archetype for resilient ecocultures. Reviews in Aquaculture, 2, 138–153.

    Article  Google Scholar 

  • Chambers, L. G., Osborne, T. Z., & Reddy, K. R. (2013). Effect of salinity–altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: A laboratory experiment. Biogeochem, 115, 363–383.

    Article  CAS  Google Scholar 

  • Chanda, A., Das, S., Bhattacharyya, S., Das, I., Giri, S., Mukhopadhyay, A., Samanta, S., Dutta, D., Akhand, A., Choudhury, S. B., & Hazra, S. (2019). CO2 fluxes from aquaculture ponds of a tropical wetland: Potential of multiple lime treatment in reduction of CO2 emission. Science of the Total Environment, 655, 1321–1333.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chang, T. C., & Yang, S. S. (2003). Methane emissions from wetlands in Taiwan. Atmospheric Environment, 37, 4551–4558.

    Article  CAS  ADS  Google Scholar 

  • Chapman, G., & Fernando, C. H. (1994). The diets and related aspects of feeding Nile tilapia (Oreochromis niloticus L.) and common carp (Cyprinus carpio L.) in low land rice fields in northeast Thailand. Aquaculture, 123, 281–307.

    Article  Google Scholar 

  • Chaudhuri, S. R., Mishra, M., Salodkar, S., Sudarshan, M., & Thakur, A. R. (2008). Traditional aquaculture practice at East Calcutta Wetland: The safety assessment. American Journal of Environmental Sciences, 4, 140–144.

    Google Scholar 

  • Chaudhuri, S. R., Mukherjee, I., Ghosh, D., & Thakur, A. R. (2012). East Kolkata Wetland: A multifunctional niche of international importance. Online Journal of Biological Sciences, 12, 80–88.

    Article  Google Scholar 

  • Chaudhuri, S. R., Salodkar, S., Sudarshan, M., & Thakur, A. R. (2007). Integrated resource recovery at East Calcutta wetland: How safe is these? American Journal of Agricultural Biological Sciences, 2, 75–80.

    Article  Google Scholar 

  • Chen, Y., Dong, S. L., Wang, F., Gao, Q. F., & Tian, X. L. (2016). Carbon dioxide and methane fluxes from feeding and no–feeding mariculture ponds. Environmental Pollution, 212, 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43, 647–656.

    Article  CAS  ADS  Google Scholar 

  • Cotovicz, L. C., Knoppers, B. A., Brandini, N., Poirier, D., Costa Santos, S. J., & Abril, G. (2016). Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnology and Oceanography, 61, S238–S252.

    Article  ADS  Google Scholar 

  • Datta, A., Nayak, D. R., Sinhababu, D. P., & Adhya, T. K. (2009). Methane and nitrous oxide emissions from an integrated rainfed rice–fish farming system of Eastern India. Agriculture, Ecosystems & Environment, 129(1–3), 228–237.

    Article  CAS  Google Scholar 

  • De Roy, S. (2012). Impact of fish farming on employment and household income. Economic and Political Weekly, 47, 69.

    Google Scholar 

  • Dutta, M. K., Chowdhury, C., Jana, T. K., & Mukhopadhyay, S. K. (2013). Dynamics and exchange fluxes of methane in the estuarine mangrove environment of Sundarbans, NE coast of India. Atmospheric Environment, 77, 631–639.

    Article  CAS  ADS  Google Scholar 

  • Flury, S., McGinnis, D. F., & Gessner, M. O. (2010). Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment. Journal of Geophysical Research: Biogeoscience, https://doi.org/10.1029/2009J G001079.

  • Frei, M., & Becker, K. (2005). A greenhouse experiment on growth and yield effects in integrated rice–fish culture. Aquaculture, 244, 119–128.

    Article  Google Scholar 

  • Furlanetto, L. M., Marinho, C. C., Palma-Silva, C., Albertoni, E. F., Figueiredo-Barros, M. P., & Esteves, F. A. (2012). Methane levels in shallow subtropical lake sediments: Dependence on the trophic status of the lake and allochthonous input. Limnology, 42, 151–155.

    Article  CAS  Google Scholar 

  • Ghosh, D. (2005). Ecology and traditional wetland practice: Lessons from wastewater utilization in the East Calcutta Wetlands. Worldview, 1st ed., p. 120.

    Google Scholar 

  • Ghosh, D., & Furedy, C. (1984). Resource conserving traditions and waste disposal: The garbage farms and sewage–fed fisheries of Calcutta. Conservation & Recycling, 7, 159–165.

    Article  Google Scholar 

  • Ghosh, S. (2018). Wastewater–fed aquaculture in East Kolkata Wetlands: State of the art and measures to protect biodiversity. In B. Jana, R. Mandal, & P. Jayasankar (Eds.), Wastewater management through aquaculture. Springer.

    Google Scholar 

  • Heyer, J., & Berger, U. (2000). Methane emission from the coastal area in the southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51(1), 13–30.

    Article  CAS  ADS  Google Scholar 

  • Holgerson, M. A. (2015). Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry, 124, 305–318.

    Article  CAS  Google Scholar 

  • Hu, M. J., Ren, H. C., Ren, P., Li, J. B., Wilson, B. J., & Tong, C. (2017). Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China. Journal of Environmental Sciences, 52, 210–222.

    Article  CAS  Google Scholar 

  • Hu, Z. Q., Wu, S., Ji, C., Zou, J. W., Zhou, Q. S., & Liu, S. W. (2016). A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environmental Science and Pollution Research, 23, 1505–1515.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., Lee, J. W., Chandran, K., Kim, S., & Khanal, S. K. (2012). Nitrous oxide (N2O) emission from aquaculture: A review. Environmental Science and Technology, 46, 6470–6480.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hu, Z., Lee, J. W., Chandran, K., Kim, S., Sharma, K., & Khanal, S. K. (2014). Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Science of the Total Environment, 470, 193–200.

    Article  PubMed  ADS  Google Scholar 

  • Inglett, K. S., Inglett, P. W., Reddy, K. R., & Osborne, T. Z. (2012). Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry, 108, 77–90.

    Article  CAS  Google Scholar 

  • Jihulya, N. J. (2014). Diet and feeding ecology of Nile Tilapia, Oreochromis Niloticus and Nile Perch, Lates niloticus in protected and unprotected areas of Lake Victoria, Tanzania. International Journal of Scientific Technology Research, 3, 280–286.

    Google Scholar 

  • Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, J., Silvola, J., & Martikainen, P. J. (1999). Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology & Biochemistry, 31, 1741–1749.

    Article  CAS  Google Scholar 

  • Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., & Baldocchi, D. (2016). Biophysical controls on inter–annual variability in ecosystem–scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research: Biogeosciences, 121, 978–1001.

    Article  CAS  ADS  Google Scholar 

  • Kundu, N., Pal, M., & Saha, S. (2008). East Kolkata Wetlands: A resource recovery system through productive activities. Proceedings of Taal 2007: The 12th World Lake Conference, pp. 868–881.

    Google Scholar 

  • Laanbroek, H. J. (2010). Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes: A mini–review. Annals of Botany, 105, 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Lide, D. R. (2007). CRC handbook of chemistry and physics, 88th ed. CRC, New York, p. 2660.

    Google Scholar 

  • Liu, S. W., Hu, Z. Q., Wu, S., Li, S. Q., Li, Z. F., & Zou, J. W. (2015). Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in southeast China. Environmental Science and Technology, 50, 633–642.

    Article  PubMed  ADS  Google Scholar 

  • Liu, S. W., Hu, Z. Q., Wu, S., Li, S. Q., Li, Z. F., & Zou, J. W. (2016). Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab−fish aquaculture in southeast China. Environmental Science and Technology, 50, 633–642.

    Article  PubMed  ADS  Google Scholar 

  • Liu, X., Gao, Y., Zhang, Z., Luo, J., & Yan, S. (2017). Sediment–water methane flux in a eutrophic pond and primary influential factors at different time scales. Water, 9, 601. https://doi.org/10.3390/w9080601

    Article  CAS  Google Scholar 

  • Lofton, D. D., Whalen, S. C., & Hershey, A. E. (2014). Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia, 721, 209–222.

    Article  CAS  Google Scholar 

  • Long, L., Xiao, S. B., Zhang, C., Zhang, W. L., Xie, H., Li, Y. C., Lei, D., Mu, X. H., & Zhang, J. W. (2016). Characteristics of methane flux across the water–air interface in subtropical shallow ponds. Huan Jing Ke Xue Huanjing Kexue, 37, 4552–4559. (in Chinese).

    PubMed  Google Scholar 

  • MacIntyre, S., Wanninkhof, R., & Chanton, J. P. (1995). Trace gas exchange across the air–water interface in freshwater and costal marine environments. In P. A. Matson and R. C. Harriss (Eds.), Biogenic trace gases: Measuring emissions from soil and water, pp. 52–97. Blackwell Science Oxford.

    Google Scholar 

  • Mondal, I., and Bandyopadhyay, J. (2015). Recent trend of aquaculture land of Bidyadhari River catchment area using geospatial techniques: A case study of Haroa and Minakhan Block, North–24 Parganas. Am Res Thoughts https://doi.org/10.6084/m9.figshare.1492986

  • Morel FM, M. (1983). Energetics and kinetics: Principles of aquatic chemistry, p. 446. Wiley.

    Google Scholar 

  • Naskar, K. R. (1985). A short history and the present trends of brackish water fish culture in paddy fields at the Kulti-Minakhan areas of Sundarbans in West Bengal. Journal of the Indian Society Coastal Agricultural Research, 3, 115–124.

    Google Scholar 

  • Neubauer, S. C., Franklin, R. B., & Berrier, D. J. (2013). Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences, 10, 8171–8183.

    Article  ADS  Google Scholar 

  • Njiru, M., Okeyo-Owuor, J. B., Muchiri, M., & Cowx, I. G. (2004). Shifts in food of Nile tilapia, Oreochromis niloticus in Lake Victoria. African Journal of Ecology, 44, 163–170.

    Article  Google Scholar 

  • Olsson, L., Ye, S., Yu, X., Wei, M., Krauss, K. W., & Brix, H. (2015). Factors in fluencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, northeast China. Biogeosciences, 12, 4965–4977.

    Article  ADS  Google Scholar 

  • Osudar, R., Matoušů, A., Alawi, M., Wagner, D., & Bussmann, I. (2015). Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuarine, Coastal Shelf Sciences, 160, 10–21.

    Article  CAS  ADS  Google Scholar 

  • Palma-Silva, C., Marinho, C. C., Albertoni, E. F., Giacomini, I. B., Figueiredo Barros, M. P., & Furlanetto, L. M. (2013). Methane emissions in two small shallow neotropical lakes: The role of temperature and trophic level. Atmospheric Environment, 81, 373–379.

    Article  CAS  ADS  Google Scholar 

  • Pathak, H., Upadhyay, R. C., Muralidhar, M., Bhattacharyya, P., & Venkateswarlu, B. (2013). Measurement of greenhouse gas emission from crop, livestock and aquaculture, p. 101. Indian Agricultural Research Institute.

    Google Scholar 

  • Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31, 831–842.

    Article  Google Scholar 

  • Roland, F. A., Darchambeau, E., Morana, F., Bouillon, C. S., & Borges, A. V. (2017). Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere, 168, 756–764.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sarkar, S., Tribedi, P., Gupta, A. D., Saha, T., & Sil, A. K. (2017). Microbial functional diversity decreases with sewage purification in stabilization ponds. Waste Biomass Valorization, 8(2), 417–423.

    Article  CAS  Google Scholar 

  • Sun, Z. G., Wang, L. L., Tian, H. Q., Jiang, H. H., Mou, X. J., & Sun, W. L. (2013). Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China. Chemosphere, 90(2), 856–865.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Venkiteswaran, J. J., Schiff, S. L., St, V. L., Louis, C. J. D., Matthews, N. M., & Boudreau, E. M. (2013). Processes affecting greenhouse gas production in experimental boreal reservoirs. Global Biogeochemical Cycles, 27, 567–577.

    Article  CAS  ADS  Google Scholar 

  • Verdegem, M. C. J., & Bosma, R. H. (2009). Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy, 11, 52–68.

    Article  Google Scholar 

  • Vizza, C., West, W. E., Jones, S. E., Hart, J. A., & Lamberti, G. A. (2017). Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 14, 431–446.

    Article  CAS  ADS  Google Scholar 

  • Wanninkhof, R. (1992). Relationship between gas exchange and wind speed over the ocean. Journal of Geophysical Research, 97, 7373–7381.

    Article  ADS  Google Scholar 

  • Welti, N., Hayes, M., & Lockington, D. (2017). Seasonal nitrous oxide and methane emissions across a subtropical estuarine salinity gradient. Biogeochemistry, 132(1–2), 55–69.

    Article  CAS  Google Scholar 

  • Wu, S., Hu, Z., Hu, T., Chen, J., Yu, K., Zou, J., & Liu, S. (2018). Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China. Atmospheric Environment, 175, 135–144.

    Article  CAS  ADS  Google Scholar 

  • Xiang, J., Liu, D. Y., Ding, W. X., Yuan, J. J., & Lin, Y. X. (2015). Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh. Atmospheric Environment, 112, 72–80.

    Article  CAS  ADS  Google Scholar 

  • Xiao, Q. T., Zhang, M., Hu, Z. H., Gao, Y. Q., Hu, C., & Liu, C. (2017). Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. Journal of Geophysical Research: Biogeosciences, 122, 1597–1614.

    Article  CAS  ADS  Google Scholar 

  • Yang, H., Andersen, T., Dörsch, P., Tominaga, K., Thrane, J. E., & Hessen, D. O. (2015a). Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry, 126, 211–225.

    Article  CAS  Google Scholar 

  • Yang, J. S., Liu, J. S., Hu, X. J., Li, X. X., Wang, Y., & Li, H. Y. (2013). Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biology and Biochemistry, 61, 52–60.

    Article  CAS  Google Scholar 

  • Yang, P., He, Q. H., Huang, J. F., & Tong, C. (2015b). Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmospheric Environment, 115, 269–277.

    Article  CAS  ADS  Google Scholar 

  • Yang, P., Lai, D. Y., Jin, B., Bastviken, D., Tan, L., & Tong, C. (2017). Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads. Science of the Total Environment, 603, 256–267.

    Google Scholar 

  • Yang, P., Lai, D. Y., Huang, J. F., & Tong, C. (2018a). Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China. Journal of Environmental Sciences, 65, 72–82.

    Article  CAS  Google Scholar 

  • Yang, P., Lai, D. Y., Yang, H., Tong, C., Lebel, L., Huang, J., & Xu, J. (2019). Methane dynamics of aquaculture shrimp ponds in two subtropical estuaries, Southeast China: Dissolved concentration, net sediment release, and water oxidation. Journal of Geophysical Research: Biogeosciences, 124, 1430–1445.

    Article  CAS  ADS  Google Scholar 

  • Yang, P., Zhang, Y., Lai, D. Y., Tan, L., Jin, B., & Tong, C. (2018b). Fluxes of carbon dioxide and methane across the water–atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity, and nitrate. Science of the Total Environment, 635, 1025–1035.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yang, S. S. (1998). Methane production in river and lake sediments in Taiwan. Environmental Geochemistry Health, 20, 245–249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are indebted to the National Remote Sensing Centre, Govt. of India for providing the research grant. Sania Shaher is indebted to the University Grants Commission (UGC), India for providing the UGC National Fellowship. The authors are also thankful to the East Kolkata Wetlands Management Authority, Govt. of West Bengal, and the local fisher community for extending their help and sharing their views and traditional knowledge. The authors are deeply grateful to Late Prof. Ananda Dev Mukherjee for his steady support and encouragement throughout this piece of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhra Chanda .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest:

All the authors state that they do not have any competing conflict of financial or any other form of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaher, S. et al. (2022). Contrasting Diffusive Methane Emission from Two Closely Situated Aquaculture Ponds of Varying Salinity Situated in a Wetland of Eastern India. In: Islam, A., Das, P., Ghosh, S., Mukhopadhyay, A., Das Gupta, A., Kumar Singh, A. (eds) Fluvial Systems in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-11181-5_20

Download citation

Publish with us

Policies and ethics