Skip to main content

Metamorphic Manipulators

  • Chapter
  • First Online:
Robot Design

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 123))

  • 588 Accesses

Abstract

Metamorphic robotic manipulator systems have been proposed in the relevant literature as a design paradigm able to enhance multiple aspects of robotic manipulator systems, such as adaptability to task requirements and performance during task execution. The present chapter presents the main design considerations for such robotic systems, examining the need for such systems and the proposed design concept. Furthermore, the modelling of metamorphic manipulator systems is presented, as well as the process of determining the analytical solution to their kinematic problems utilizing a modular kinematic approach. The chapter also presents methods for the dynamic structuring and design of metamorphic manipulator systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Multi-Annual Roadmap (MAR) For Robotics in Europe (2022). https://ec.europa.eu/digital-single-market/en/news/multi-annual-roadmap-call-ict-24-robotics-now-available

  2. Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 449–455. IEEE (1994)

    Google Scholar 

  3. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable manufacturing systems. CIRP Ann. 48(2), 527–540 (1999)

    Google Scholar 

  4. Mehrabi, M.G., Ulsoy, A.G., Koren, Y.: Reconfigurable manufacturing systems: key to future manufacturing. J. Intell. Manuf. 11(4), 403–419 (2000)

    Article  Google Scholar 

  5. Huang, C.C., Kusiak, A.: Modularity in design of products and systems. IEEE Trans. Syst. Man, Cybernet. Part A: Syst. Humans 28(1), 66–77 (1998)

    Article  Google Scholar 

  6. Schmitz, D., Khosla, P., Kanade, T.: The CMU reconfigurable modular manipulator system (1988)

    Google Scholar 

  7. Kereluk, J.A., Reza Emami, M.: A new modular, autonomously reconfigurable manipulator platform. Int. J. Adv. Robot. Syst. 12.6, 71 (2015)

    Google Scholar 

  8. Matsumaru, T.: Design, and control of the modular robot system: TOMMS, robotics and automation. In: Proceedings of the International Conference on IEEE, vol. 2, pp. 2125–2131 (1995)

    Google Scholar 

  9. Tosi, D., et al.: Cheope: a new reconfigurable redundant manipulator. Mech. Mach. Theory 45(4), 611–626 (2010)

    Article  Google Scholar 

  10. Xu, W., et al.: A wireless reconfigurable modular manipulator and its control system. Mechatronics 73, 102470 (2021)

    Google Scholar 

  11. Yun, A., et al. (2020). ModMan: an advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm. IEEE Robot. Autom. Lett. 5(3), 4225–4232 (2020)

    Google Scholar 

  12. Carbonari, L., et al.: A new class of reconfigurable parallel kinematic machines. Mech. Mach. Theory 79, 173–183 (2014)

    Article  Google Scholar 

  13. Tang, X., Sun, D., Shao, Z.: The structure and dimensional design of a reconfigurable PKM. Int. J. Adv. Rob. Syst. 10(6), 267 (2013)

    Article  Google Scholar 

  14. Plitea, N., et al.: Structural design and kinematics of a new parallel reconfigurable robot. Robot. Comp. Integr. Manuf. 29(1), 219–235 (2013)

    Google Scholar 

  15. Hong, S., et al.: Design of manually reconfigurable modular manipulator with three revolute joints and links. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2016)

    Google Scholar 

  16. Stravopodis, N.A., Valsamos, C., Moulianitis, V.C.: An integrated taxonomy and critical review of module designs for serial reconfigurable manipulators. In: International Conference on Robotics in Alpe-Adria Danube Region. Springer, Cham (2019)

    Google Scholar 

  17. Liu, G., Liu, Y., Goldenberg, A.A.: Design, analysis, and control of a spring-assisted modular and reconfigurable robot. IEEE/ASME Trans. Mechatron. 16(4), 695–706 (2010)

    Article  Google Scholar 

  18. Jia, G., et al.: Synthesis of a novel type of metamorphic mechanism module for large scale deployable grasping manipulators. Mech. Machine Theory 128, 544–559 (2018)

    Google Scholar 

  19. Chen, I.-M.: Rapid response manufacturing through a rapidly reconfigurable robotic workcell. Robot. Comp. Integr. Manuf. 17, 199-213M (2001)

    Article  Google Scholar 

  20. Stoy, K., et al.: Self-reconfigurable robots: an introduction. Cambridge: Mit Press (2010)

    Google Scholar 

  21. Bateau, J., et al.: Increasing the efficiency of distributed goal-filling algorithms for self-reconfigurable hexagonal metamorphic robots. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2012)

    Google Scholar 

  22. Salvi, A.Z., Simoni, R., Martins, D.: Enumeration problems: a bridge between planar metamorphic robots in engineering and polyforms in mathematics. In: Advances in Reconfigurable Mechanisms and Robots I. Springer, London, pp. 25–34 (2012)

    Google Scholar 

  23. Hogg, T.: Energy dissipation by metamorphic micro-robots in viscous fluids. J. Micro-Bio Robot. 11(1), 85–95 (2016)

    Article  Google Scholar 

  24. Ivanov, P., Walter, J.: Layering algorithm for collision-free traversal using hexagonal self-reconfigurable metamorphic robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2010)

    Google Scholar 

  25. Craig, J.J.: Introduction to Robotics, Mechanics and Control. Addison – Wesley Publishing (1955)

    Google Scholar 

  26. Valsamos, C., Moulianitis, V., Aspragathos, N.: Index based optimal anatomy of a metamorphic manipulator for a given task. Robot. Comp. Integr. Manuf. 28(4), 517–529 (2012)

    Article  Google Scholar 

  27. Valsamos, C, Moulianitis, V.C., Aspragathos, N.: Metamorphic structure representation: designing and evaluating anatomies of metamorphic manipulators. In: Advances in Reconfigurable Mechanisms and Robots I. Springer, pp. 3–11 (2012)

    Google Scholar 

  28. Moulianitis, V.C., et al.: Task-based optimal design of metamorphic service manipulators. J. Mech. Robot. 8(6) (2016)

    Google Scholar 

  29. Murray, R.M., et al.: A mathematical introduction to robotic manipulation. CRC press (1994)

    Google Scholar 

  30. Selig, J.M.: Introductory Robotics. Prentice Hall Int, London (1992)

    MATH  Google Scholar 

  31. Stravopodis, N.A., et al.: Evaluation of serial metamorphic manipulator structures considering inertia characteristics. In: International Conference on Robotics in Alpe-Adria Danube Region. Springer, pp. 574–587 (2020)

    Google Scholar 

  32. Gao, Y.: Decomposible Closed-Form Inverse Kinematics for Reconfigurable Robots Using Product of Exponential Formula. Master Thesis, School of Mechanical and Production Engineering Nanyang Technological University (2000)

    Google Scholar 

  33. Yang, D.C.H., Tzeng, S.W.: Simplification and linearization of manipula-tor dynamics by the design of inertia distribution. Int. J. Robot. Res. 5(3):120–128 (1986)

    Google Scholar 

  34. Youcef-Toumi, K., Asada, H.: The design of open-loop manipulator arms with decoupled and configuration-invariant inertia tensors (1987)

    Google Scholar 

  35. Chung, W.K., et al.: On the dynamic characteristics of balanced robotic manipulators. In: Japan-USA Symposium on Flexible Automation, Controland Design of Robotics. Japan-USA Symposium, pp. 119–126 (1986)

    Google Scholar 

  36. Park, H.S., Cho, H.S.: An approach to the design of ideal robotic manipulators having simple dynamic characteristics. In: Proceedings of the Institution of Mechanical Engineers, Part B: Management and Engineering Manufacture, vol. 201, no. 4, pp. 221–228 (1987)

    Google Scholar 

  37. Park, H.S., Cho, H.S.: General design conditions for an ideal robotic manipulator having simple dynamics. Int. J. Robot. Res. 10(1), 21–29 (1991)

    Google Scholar 

  38. Matone, R., Roth, B.: Designing manipulators for both kinematic and dynamic isotropic properties. In: ROMANSY 11. Springer, pp. 99–106 (1997)

    Google Scholar 

  39. Ma, O., Angeles, J.: Optimum design of manipulators under dynamic isotropy conditions. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 470–475. IEEE (1993)

    Google Scholar 

  40. Stravopodis, N.A., Moulianitis, V.C., Valsamos, C.: Investigation of dynamically decoupled anatomies for a serialmetamorphic manipulator. In: The International Conference of IFToMMITALY, pp. 295–309. Springer (2020)

    Google Scholar 

  41. Stravopodis, N.A., Katrantzis, L., Moulianitis, V.C., Valsamos, C., Aspragathos, N.A.: Evaluation of serial metamorphic manipulator structures considering inertia characteristics. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 574–587. Springer, Cham (2000)

    Google Scholar 

Download references

Acknowledgements

This research has been financially supported by General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Code: 1184)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Moulianitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valsamos, C., Stravopodis, N., Moulianitis, V., Apsragathos, N.A. (2023). Metamorphic Manipulators. In: Carbone, G., Laribi, M.A. (eds) Robot Design. Mechanisms and Machine Science, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-031-11128-0_8

Download citation

Publish with us

Policies and ethics