Skip to main content

Clinical Applications of Dynamic Contrast-Enhanced (DCE) Permeability Imaging

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) is an MRI perfusion technique that calculates perfusion parameters by evaluating the concentration of a gadolinium-based contrast agent (GBCA) in tissue as a function of time after bolus injection of GBCA. The most commonly calculated parameter is Ktrans, the volume transfer constant describing the rate of flux of contrast agent into the extravascular-extracellular space. DCE MRI has been mainly used for clinical application in brain tumors, as the possibility to obtain information about vascular hemodynamics allowed to noninvasively characterize neoplastic lesions, improving diagnostic accuracy and ultimately leading to appropriate treatment decisions and increased probability of better patient outcomes. However, despite newer imaging and post-processing techniques, the full application of DCE MRI into routine clinical setting is still challenging. In this chapter, we review the main clinical applications of DCE MRI, present results from studies showing the advantages and pitfalls of this technique, and provide examples of perfusion techniques applied to patients. Current challenges and future perspectives are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. Am J Neuroradiol. 2007;28(10):1850–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Provenzale JM, Schmainda K. Perfusion imaging for brain tumor characterization and assessment of treatment response. In: Jolesz F, editor. Handbook of neuro-oncology neuroimaging. New York: Elsevier; 2008. p. 265–77.

    Google Scholar 

  3. Parker GJM, Padhani AR. T1-W DCE MRI: T1-weighted dynamic contrast-enhanced MRI. In: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Chichester: Wiley; 2005. p. 341–64.

    Google Scholar 

  4. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    PubMed  Google Scholar 

  5. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17(2):357–67.

    CAS  PubMed  Google Scholar 

  6. Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21(6):728–35.

    PubMed  Google Scholar 

  7. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst. 2005;97(3):172–87.

    CAS  PubMed  Google Scholar 

  8. Jackson A, Jayson GC, Li KL, Zhu XP, Checkley DR, Tessier JJL, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol. 2003;76(903):153–62.

    CAS  PubMed  Google Scholar 

  9. Provenzale JM, York G, Moya MG, Parks L, Choma M, Kealey S, et al. Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms. Am J Roentgenol. 2006;187(4):1036–42.

    Google Scholar 

  10. Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. Am J Neuroradiol. 2015;36(6):E41–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Semmineh N, Bell L, Stokes A, Hu L, Boxerman J, Quarles C. Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast (DSC) MRI using a population-based digital reference object. AJNR Am J Neuroradiol. 2018;39(11):1981–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2–3):72–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao Y, Nagesh V, Hamstra D, Tsien CI, Ross BD, Chenevert TL, et al. The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res. 2006;66(17):8912–7.

    CAS  PubMed  Google Scholar 

  14. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247(2):490–8.

    PubMed  Google Scholar 

  15. Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Caseiras GB, Tofts PS, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1):170–8.

    PubMed  Google Scholar 

  16. Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging prediction of patient clinical response. Radiology. 2006;238(2):658–67.

    PubMed  Google Scholar 

  17. Lev MH, Rosen BR. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am. 1999;9(2):309–31.

    CAS  PubMed  Google Scholar 

  18. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol. 2003;24(10):1989–98.

    PubMed  PubMed Central  Google Scholar 

  19. Jain R. Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed. 2013;26(8):1042–9.

    PubMed  Google Scholar 

  20. O’Connor JPB, Jackson A, Parker GJM, Roberts C, Jayson GC. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol. 2012;9(3):167–77.

    PubMed  Google Scholar 

  21. Padhani AR, Husband JE. Dynamic contrast-enhanced (MRI) studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol. 2001;56(8):607–20.

    CAS  PubMed  Google Scholar 

  22. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191(1):41–51.

    CAS  PubMed  Google Scholar 

  23. Parker GJM, Suckling J, Tanner SF, Padhani AR, Revell PB, Husband JE, et al. Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging. 1997;7(3):564–74.

    CAS  PubMed  Google Scholar 

  24. Just N. Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer. 2014;111(12):2205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Connor JPB, Rose CJ, Waterton JC, Carano RAD, Parker GJM, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21(2):249–57.

    PubMed  Google Scholar 

  26. Knopp MV, Giesel FL, Marcos H, von Tengg-Kobligk H, Choyke P. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging. 2001;12(4):301–8.

    CAS  PubMed  Google Scholar 

  27. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004;25(5):746–55.

    PubMed  PubMed Central  Google Scholar 

  28. Roberts HC, Roberts TPL, Ley S, Dillon WP, Brasch RC. Quantitative estimation of microvascular permeability in human brain tumors. Acad Radiol. 2002 Jan;9(1):S151–5.

    PubMed  Google Scholar 

  29. Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al. Comparison of microvascular permeability measurements, Ktrans, determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. Am J Neuroradiol. 2006;27(2):409–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Patankar TF, Haroon HA, Mills SJ, Baleriaux D, Buckley DL, Parker GJM, et al. Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol. 2005;26(10):2455–65.

    PubMed  PubMed Central  Google Scholar 

  32. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol. 2002;178(3):711–6.

    Google Scholar 

  33. Haris M, Husain N, Singh A, Husain M, Srivastava S, Srivastava C, et al. Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comput Assist Tomogr. 2008;32(6):955–65.

    PubMed  Google Scholar 

  34. Roberts HC, Roberts TPL, Bollen AW, Ley S, Brasch RC, Dillon WP. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol. 2001;8(5):384–91.

    CAS  PubMed  Google Scholar 

  35. Jung SC, Yeom JA, Kim JH, Ryoo I, Kim SC, Shin H, et al. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. Am J Neuroradiol. 2014;35(6):1103–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen TB, Cron GO, Perdrizet K, Bezzina K, Torres CH, Chakraborty S, et al. Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of astrocytomas. Am J Neuroradiol. 2015;36(11):2017–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shin JH, Lee HK, Kwun BD, Kim J-S, Kang W, Choi CG, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol. 2002;179(3):783–9.

    Google Scholar 

  38. Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol. 1998;171(6):1479–86.

    CAS  Google Scholar 

  39. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):1–18.

    Google Scholar 

  40. Moon WJ, Choi JW, Roh HG, Lim SD, Koh YC. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology. 2012;54(6):555–63.

    PubMed  Google Scholar 

  41. Jung SC, Choi SH, Yeom JA, Kim JH, Ryoo I, Kim SC, et al. Cerebral blood volume analysis in glioblastomas using dynamic susceptibility contrast-enhanced perfusion MRI: a comparison of manual and semiautomatic segmentation methods. PLoS One. 2013;8(8):5–7.

    Google Scholar 

  42. Tykocinski ES, Grant RA, Kapoor GS, Krejza J, Bohman L, Gocke TA, et al. To determine epidermal growth factor receptor. Neuro-Oncology. 2012;14(5):613–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta A, Young RJ, Shah AD, Schweitzer AD, Graber JJ, Shi W, et al. Pretreatment dynamic susceptibility contrast MRI perfusion in glioblastoma: prediction of EGFR gene amplification. Clin Neuroradiol. 2015;25(2):143–50.

    CAS  PubMed  Google Scholar 

  44. Lee S, Choi SH, Ryoo I, Yoon TJ, Kim TM, Lee SH, et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. J Neuro-Oncol. 2015;121(1):141–50.

    CAS  Google Scholar 

  45. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Von Deimling A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep. 2015;5:1–9.

    Google Scholar 

  46. Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg. 2014;121(2):367–73.

    PubMed  Google Scholar 

  47. Arevalo-Perez J, Thomas AA, Kaley T, Lyo J, Peck KK, Holodny AI, et al. T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor VIII status. Am J Neuroradiol. 2015;36(12):2256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. Am J Neuroradiol. 2001;22(5):959–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.

    CAS  PubMed  Google Scholar 

  50. Keil VC, Pintea B, Gielen GH, Greschus S, Fimmers R, Gieseke J, et al. Biopsy targeting with dynamic contrast-enhanced versus standard neuronavigation MRI in glioma: a prospective double-blinded evaluation of selection benefits. J Neuro-Oncol. 2017;133(1):155–63.

    Google Scholar 

  51. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusio. Am J Neuroradiol. 2008;30(3):552–8.

    PubMed  Google Scholar 

  52. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol. 2000;21(5):901–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hazle JD, Jackson EF, Schomer DF, Leeds NE. Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging. 1997;7(6):1084–93.

    CAS  PubMed  Google Scholar 

  54. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4):527–57.

    PubMed  Google Scholar 

  55. Nael K, Bauer AH, Hormigo A, Lemole M, Germano IM, Puig J, et al. Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma. Am J Roentgenol. 2018;210(1):18–23.

    Google Scholar 

  56. Bisdas S, Naegele T, Ritz R, Dimostheni A, Pfannenberg C, Reimold M, et al. Distinguishing recurrent high-grade gliomas from radiation injury. A pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18(5):575–83.

    PubMed  Google Scholar 

  57. Larsen VA, Simonsen HJ, Law I, Larsson HBW, Hansen AE. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology. 2013;55(3):361–9.

    PubMed  Google Scholar 

  58. Shin KE, Ahn KJ, Choi HS, Jung SL, Kim BS, Jeon SS, et al. DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clin Radiol. 2014;69(6):e264–72.

    CAS  PubMed  Google Scholar 

  59. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    CAS  PubMed  Google Scholar 

  60. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.

    PubMed  Google Scholar 

  61. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology. Neuro-Oncology. 2008;10(3):361–7.

    PubMed  PubMed Central  Google Scholar 

  62. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):453–61.

    PubMed  Google Scholar 

  63. de Wit MCY, de Bruin HG, Eijkenboom W, Sillevis Smitt PAE, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63(3):535–7.

    PubMed  Google Scholar 

  64. Chamberlain MC, Glantz MJ, Chalmers L, Van HA, Sloan AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neuro-Oncol. 2006;82(1):81–3.

    Google Scholar 

  65. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    CAS  PubMed  Google Scholar 

  66. Gahramanov S, Varallyay C, Tyson RM, Lacy C, Fu R, Netto JP, et al. Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival. CNS. Oncologia. 2014;3(6):389–400.

    CAS  Google Scholar 

  67. Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, Shi W, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125(1):183–90.

    Google Scholar 

  68. Shiroishi MS, Boxerman JL, Pope WB. Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro-Oncology. 2016;18(4):467–78.

    CAS  PubMed  Google Scholar 

  69. Mangla R, Singh G, Ziegelitz D, Milano MT, Korones DN, Zhong J, et al. Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology. 2010;256(2):575–84.

    PubMed  Google Scholar 

  70. Narang J, Jain R, Arbab AS, Mikkelsen T, Scarpace L, Rosenblum ML, et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion Jayant. Neuro-Oncology. 2011;13(9):1037–46.

    PubMed  PubMed Central  Google Scholar 

  71. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging. 2013;37(1):41–9.

    PubMed  Google Scholar 

  72. Yun T, Park C-K, Kim TM, Lee S-H, Kim JH, Sohn CH, et al. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 2015;274(3):830–40.

    PubMed  Google Scholar 

  73. Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Am J Neuroradiol. 2013;34(12):2278–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gahramanov S, Muldoon LL, Varallyay CG, Li X, Kraemer DF, Fu R, et al. Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology. 2013;266(3):842–52.

    PubMed  PubMed Central  Google Scholar 

  75. Radbruch A, Bendszus M, Wick W, Heiland S. Comment to: Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma: Pitfalls in perfusion MRI in brain tumors. Clin Neuroradiol. 2010;20(3):183–4.

    CAS  PubMed  Google Scholar 

  76. Baek HJ, Kim HS, Kim N, Chio YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology. 2012;264(3):834–43.

    PubMed  Google Scholar 

  77. Martínez-Martínez A, Martínez-Bosch J. Perfusion magnetic resonance imaging for high grade astrocytomas: can cerebral blood volume, peak height, and percentage of signal intensity recovery distinguish between progression and pseudoprogression? Radiology. 2014;56(1):35–43.

    Google Scholar 

  78. Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol. 2015;36(5):877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum - use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. Am J Roentgenol. 2012;198(1):19–26.

    Google Scholar 

  80. de Groot JF, Yung WKA. Bevacizumab and irinotecan in the treatment of recurrent malignant gliomas. Cancer J. 2008;14(5):279–85.

    PubMed  Google Scholar 

  81. Cohen MH, Shen YL, Keegan P, Pazdur R. Drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–8.

    CAS  PubMed  Google Scholar 

  82. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus O6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27(8):1262–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25(30):4722–9.

    CAS  PubMed  Google Scholar 

  84. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31(26):3212–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Desjardins A, Barboriak DP, Herndon JE, Marcello J, Reardon DA, Quinn JA, et al. Effect of bevacizumab (BEV) and irinotecan (CPT-11) on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in glioblastoma (GBM) patients. J Clin Oncol. 2008;26(15):20–6.

    Google Scholar 

  87. Cha S, Knopp EA, Johnson G, Litt A, Glass J, Gruber ML, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. Am J Neuroradiol. 2000;21(5):881–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Piludu F, Marzi S, Pace A, Villani V, Fabi A, Carapella CM, et al. Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology. 2015;57(12):1269–80.

    PubMed  Google Scholar 

  89. O’Neill AF, Qin L, Wen PY, de Groot JF, Van den Abbeele AD, Yap JT. Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neuro-Oncol. 2016;130(3):495–503.

    Google Scholar 

  90. Muccio CF, Esposito G, Bartolini A, Cerase A. Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med. 2008;113(5):747–57.

    CAS  PubMed  Google Scholar 

  91. Batra A, Tripathi RP. Atypical diffusion-weighted magnetic resonance findings in glioblastoma multiforme. Australas Radiol. 2004;48(3):388–91.

    CAS  PubMed  Google Scholar 

  92. Erdogan C, Hakyemez B, Yildirim N, Parlak M. Brain abscess and cystic brain tumor. J Comput Assist Tomogr. 2005;29(5):663–7.

    PubMed  Google Scholar 

  93. Chiang I-C, Hsieh T-J, Chiu M-L, Liu G-C, Kuo Y-T, Lin W-C. Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol. 2009;82(982):813–20.

    PubMed  Google Scholar 

  94. Britt RH, Enzmann DR, Yeager AS. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg. 1981;55(4):590–603.

    CAS  PubMed  Google Scholar 

  95. Cha S, Pierce S, Knopp EA, Johnson G, Yang C, Ton A, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. Am J Neuroradiol. 2001;22(6):1109–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jain R, Ellika S, Lehman NL, Scarpace L, Schultz LR, Rock JP, et al. Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT? J Neuro-Oncol. 2009;97(3):383–8.

    Google Scholar 

  97. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223(1):11–29.

    PubMed  Google Scholar 

  98. Andersen C, Jensen FT. Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir. 1998;140(9):919–24.

    CAS  PubMed  Google Scholar 

  99. Lüdemann L, Grieger W, Wurm R, Wust P, Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging. 2005;23(8):833–41.

    PubMed  Google Scholar 

  100. Yang S, Law M, Zagzag D, Wu HH, Cha S, Golfinos JG, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: Differentiation between atypical and typical meningiomas. Am J Neuroradiol. 2003;24(8):1554–9.

    PubMed  PubMed Central  Google Scholar 

  101. Berger MS. Perfusion MR and the evaluation of meningiomas: is it important surgically? AJNR. 2003;24:1499–500.

    PubMed  PubMed Central  Google Scholar 

  102. Firat AK, Karakas HM, Kahraman B, Firat Y, Altinok T, Kizilay A. Dynamic contrast-enhanced magnetic resonance imaging findings of mass lesions of the pontocerebellar angle. Kulak Burun Bogaz Ihtis Derg. 2007;17(4):217–23.

    PubMed  Google Scholar 

  103. Zhu XP, Li KL, Kamaly-Asl ID, Checkley DR, Tessier JJL, Waterton JC, et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging. 2000;11(6):575–85.

    CAS  PubMed  Google Scholar 

  104. Hawighorst H, Engenhart R, Knopp MV, Brix G, Grandy M, Essig M, et al. Intracranial meningiomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging. 1997;15(4):423–32.

    CAS  PubMed  Google Scholar 

  105. Weber M-A, Giesel FL, Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev Neurother. 2008;8(10):1507–25.

    PubMed  Google Scholar 

  106. Ostrom QT, Gittleman H, Liao P, Vecchione-koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncology. 2017;19(5):1–88.

    Google Scholar 

  107. Campos S, Davey P, Hird A, Pressnail B, Bilbao J, Aviv RI, et al. Brain metastasis from an unknown primary, or primary brain tumour? A diagnostic dilemma. Curr Oncol. 2009;16(1):71–5.

    Google Scholar 

  108. Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR, Xiao S, et al. Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2):427–33.

    PubMed  PubMed Central  Google Scholar 

  109. Fidler IJ. The biology of brain metastasis: challenges for therapy. Cancer J. 2015;21(4):284–93.

    CAS  PubMed  Google Scholar 

  110. Klekner Á, Hutóczki G, Virga J, Reményi-Puskár J, Tóth J, Scholtz B, et al. Expression pattern of invasion-related molecules in the peritumoral brain. Clin Neurol Neurosurg. 2015;139:138–43.

    PubMed  Google Scholar 

  111. Zhao J, Yang ZY, Luo BN, Yang JY, Chu JP. Quantitative evaluation of diffusion and dynamic contrast-enhanced MR in tumor parenchyma and Peritumoral area for distinction of brain tumors. PLoS One. 2015;10(9):1–15.

    Google Scholar 

  112. Jung BC, Arevalo-Perez J, Lyo JK, Holodny AI, Karimi S, Young RJ, et al. Comparison of glioblastomas and brain metastases using dynamic contrast-enhanced perfusion MRI. J Neuroimaging. 2016;165(2):255–69.

    Google Scholar 

  113. Han C, Huang S, Guo J, Zhuang X, Han H. Use of a high b-value for diffusion weighted imaging of peritumoral regions to differentiate high-grade gliomas and solitary metastases. J Magn Reson Imaging. 2015;42(1):80–6.

    PubMed  Google Scholar 

  114. Takeuchi H, Matsuda K, Kitai R, Sato K, Kubota T. Angiogenesis in primary central nervous system lymphoma (PCNSL). J Neuro-Oncol. 2007;84(2):141–5.

    Google Scholar 

  115. Coulon A, Lafitte F, Hoang-Xuan K, Martin-Duverneuil N, Mokhtari K, Blustajn J, et al. Radiographic findings in 37 cases of primary CNS lymphoma in immunocompetent patients. Eur Radiol. 2002;12(2):329–40.

    CAS  PubMed  Google Scholar 

  116. Nabavizadeh SA, Vossough A, Hajmomenian M, Assadsangabi R, Mohan S. Neuroimaging in central nervous system lymphoma. Hematol Oncol Clin N Am. 2016;30(4):799–821.

    Google Scholar 

  117. Lozano-Lanagrán M, Robles M, Lucena MI, Andrade RJ. Hepatotoxicity in 2011 - advancing resolutely. Rev Esp Enferm Dig. 2011;103(9):472–9.

    PubMed  Google Scholar 

  118. Kickingereder P, Wiestler B, Sahm F, Heiland S. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology. 2014;272(3):843–50.

    PubMed  Google Scholar 

  119. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson BJ, Smits M, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro-Oncology. 2015;17(9):1188–98.

    PubMed  PubMed Central  Google Scholar 

  120. Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Kondratovich M, et al. Metrology standards for quantitative imaging biomarkers. Radiology. 2015;277(3):813–25.

    PubMed  Google Scholar 

  121. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.

    CAS  PubMed  Google Scholar 

  124. Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol. 2016;131(5):687–707.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported in part by the GE Healthcare/RSNA Research Scholar Grant.

Supported in part by the Zumberge Research Grant, University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lacerda, S., Barisano, G., Shiroishi, M.S., Law, M. (2023). Clinical Applications of Dynamic Contrast-Enhanced (DCE) Permeability Imaging. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics