Skip to main content

Functional MRI: Cognitive Neuroscience Applications

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Cognitive neuroscience is a discipline that attempts to determine the neural mechanisms underlying cognitive processes. Functional neuroimaging, broadly defined as techniques that measure brain activity, has expanded our ability to study the neural basis of cognitive processes. One such method, functional magnetic resonance imaging (fMRI), is a powerful technique that affords excellent spatial and temporal resolution. Measuring brain activity in healthy subjects while they perform cognitive tasks can link localized and/or distributed brain activity with specific behaviors. This chapter focuses on the principles underlying fMRI as a cognitive neuroscience tool for exploring brain–behavior relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broca P. Remarques sur le siege de la faculte du langage articule suivies d'une observation d'amphemie (perte de al parole). Bull Mém Soc Anat Paris. 1861;36:330–57.

    Google Scholar 

  2. Buckner RL, Raichle ME, Petersen SE. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol. 1995;74(5):2163–73.

    CAS  PubMed  Google Scholar 

  3. Sarter M, Bernston G, Cacioppo J. Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. Am Psychol. 1996;51:13–21.

    CAS  PubMed  Google Scholar 

  4. Gaffan D, Gaffan EA. Amnesia in man following transection of the fornix: a review. Brain. 1991;114:2611–8.

    PubMed  Google Scholar 

  5. Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17(5):817–30.

    CAS  PubMed  Google Scholar 

  6. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173:652–4.

    CAS  PubMed  Google Scholar 

  7. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61:331–49.

    CAS  PubMed  Google Scholar 

  8. Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci. 1993;13:1479–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Watanabe T, Niki H. Hippocampal unit activity and delayed response in the monkey. Brain Res. 1985;325(1–2):241–54.

    CAS  PubMed  Google Scholar 

  10. Cahusac PM, Miyashita Y, Rolls ET. Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks. Behav Brain Res. 1989;33(3):229–40.

    CAS  PubMed  Google Scholar 

  11. Alvarez P, Zola-Morgan S, Squire LR. The animal model of human amnesia: long-term memory impaired and short-term memory intact. Proc Natl Acad Sci U S A. 1994;91(12):5637–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol. 1984;4:249–59.

    Google Scholar 

  13. Ranganath C, D'Esposito M. Medial temporal lobe activity associated with active maintenance of novel information. Neuron. 2001;31(5):865–73.

    CAS  PubMed  Google Scholar 

  14. Druzgal TJ, D'Esposito M. Activity in fusiform face area modulated as a function of working memory load. Brain Res Cogn Brain Res. 2001;10(3):355–64.

    CAS  PubMed  Google Scholar 

  15. Henson R. Forward inference using functional neuroimaging: dissociations versus associations. Trends Cogn Sci. 2006;10(2):64–9.

    PubMed  Google Scholar 

  16. Cohen MS, Kosslyn SM, Breiter HC, DiGirolamo GJ, Thompson WL, Anderson AK, et al. Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain. 1996;119:89–100.

    PubMed  Google Scholar 

  17. D'Esposito M, Ballard D, Aguirre GK, Zarahn E. Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage. 1998;8(3):274–82.

    CAS  PubMed  Google Scholar 

  18. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci. 2006;10(2):59–63.

    PubMed  Google Scholar 

  19. Edminster WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7:88–97.

    Google Scholar 

  20. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-related fMRI of the auditory cortex. Neuroimage. 1999;10(4):417–29.

    CAS  PubMed  Google Scholar 

  21. Gitelman DR, Parrish TB, LaBar KS, Mesulam MM. Real-time monitoring of eye movements using infrared video-oculography during functional magnetic resonance imaging of the frontal eye fields. Neuroimage. 2000;11(1):58–65.

    CAS  PubMed  Google Scholar 

  22. Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res. 2001;141(2):184–94.

    CAS  PubMed  Google Scholar 

  23. Goldman RI, Stern JM, Engel J Jr, Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol. 2000;111(11):1974–80.

    CAS  PubMed  Google Scholar 

  24. Lazeyras F, Zimine I, Blanke O, Perrig SH, Seeck M. Functional MRI with simultaneous EEG recording: feasibility and application to motor and visual activation. J Magn Reson Imaging. 2001;13(6):943–8.

    CAS  PubMed  Google Scholar 

  25. Neuner I, Arrubla J, Felder J, Shah NJ. Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. Neuroimage. 2014;102(Pt 1):71–9.

    PubMed  Google Scholar 

  26. Abreu R, Leal A, Lopes da Silva F, Figueiredo P. EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. Clin Neurophysiol. 2018;129(3):618–35.

    PubMed  Google Scholar 

  27. Gnadt JW, Andersen RA. Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res. 1988;70:216–20.

    CAS  PubMed  Google Scholar 

  28. Aguirre GK, Zarahn E, D'Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage. 1998;8(4):360–9.

    CAS  PubMed  Google Scholar 

  29. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course of EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.

    CAS  PubMed  Google Scholar 

  30. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16:4207–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim SG, Richter W, Ugurbil K. Limitations of temporal resolution in fMRI. Magn Reson Med. 1997;37:631–6.

    CAS  PubMed  Google Scholar 

  32. Savoy RL, Bandettini PA, O'Craven KM, Kwong KK, Davis TL, Baker JR, et al. Pushing the temporal resolution of fMRI: studies of very brief stimuli, onset of variability and asynchrony, and stimulus-correlated changes in noise. Proc Soc Magn Reson Med. 1995;3:450.

    Google Scholar 

  33. Zarahn E, Aguirre GK, D'Esposito M. A trial-based experimental design for functional MRI. Neuroimage. 1997;6:122–38.

    CAS  PubMed  Google Scholar 

  34. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport. 1998;9(16):3735–9.

    CAS  PubMed  Google Scholar 

  35. Clark VP, Maisog JM, Haxby JV. fMRI studies of visual perception and recognition using a random stimulus design. Soc Neurosci Abstr. 1997;23:301.

    Google Scholar 

  36. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997;5:1–12.

    Google Scholar 

  37. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage. 2000;11(6 Pt 1):735–59.

    CAS  PubMed  Google Scholar 

  38. D'Esposito M, Zarahn E, Aguirre GK. Event-related functional MRI: implications for cognitive psychology. Psychol Bull. 1999;125:155–64.

    CAS  PubMed  Google Scholar 

  39. Logothetis NK, Guggenberger H, Peled S, Pauls J. Functional imaging of the monkey brain. Nat Neurosci. 1999;2(6):555–62.

    CAS  PubMed  Google Scholar 

  40. Cheng K, Waggoner RA, Tanaka K. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron. 2001;32(2):359–74.

    CAS  PubMed  Google Scholar 

  41. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K. Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron. 2002;35(2):227–42.

    CAS  PubMed  Google Scholar 

  42. Besle J, Sanchez-Panchuelo RM, Bowtell R, Francis S, Schluppeck D. Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum Brain Mapp. 2014;35(5):2027–43.

    PubMed  Google Scholar 

  43. Budde J, Shajan G, Zaitsev M, Scheffler K, Pohmann R. Functional MRI in human subjects with gradient-echo and spin-echo EPI at 9.4 T. Magn Reson Med. 2014;71(1):209–18.

    PubMed  Google Scholar 

  44. Ehses P, Bause J, Shajan G, Scheffler K. Efficient generation of T2*-weighted contrast by interslice echo-shifting for human functional and anatomical imaging at 9.4 tesla. Magn Reson Med. 2015;74(6):1698–704.

    CAS  PubMed  Google Scholar 

  45. Guidi M, Huber L, Lampe L, Gauthier CJ, Moller HE. Lamina-dependent calibrated BOLD response in human primary motor cortex. Neuroimage. 2016;141:250–61.

    PubMed  Google Scholar 

  46. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr Biol. 2016;26(3):371–6.

    CAS  PubMed  Google Scholar 

  47. Maass A, Schutze H, Speck O, Yonelinas A, Tempelmann C, Heinze HJ, et al. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun. 2014;5:5547.

    CAS  PubMed  Google Scholar 

  48. Grill-Spector K, Malach R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst). 2001;107(1–3):293–321.

    CAS  PubMed  Google Scholar 

  49. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999;24(1):187–203.

    CAS  PubMed  Google Scholar 

  50. Posner MI, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain. Science. 1988;240:1627–31.

    CAS  PubMed  Google Scholar 

  51. Sternberg S. The discovery of processing stages: extensions of Donders’ method. Acta Psychol (Amst). 1969;30:276–315.

    Google Scholar 

  52. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single word processing. Nature. 1988;331:585–9.

    CAS  PubMed  Google Scholar 

  53. Fuster J. The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobes. 3rd ed. New York: Raven Press; 1997.

    Google Scholar 

  54. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. Spatial working memory in humans as revealed by PET. Nature. 1993;363:623–5.

    CAS  PubMed  Google Scholar 

  55. Zarahn E, Aguirre GK, D'Esposito M. Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Cogn Brain Res. 1999;7(3):255–68.

    CAS  Google Scholar 

  56. Friston KJ, Josephs O, Rees G, Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med. 1998;39(1):41–52.

    CAS  PubMed  Google Scholar 

  57. Glover GH. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage. 1999;9(4):416–29.

    CAS  PubMed  Google Scholar 

  58. Miller KL, Luh WM, Liu TT, Martinez A, Obata T, Wong EC, et al. Nonlinear temporal dynamics of the cerebral blood flow response. Hum Brain Mapp. 2001;13(1):1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vazquez AL, Noll DC. Nonlinear aspects of the BOLD response in functional MRI. Neuroimage. 1998;7(2):108–18.

    CAS  PubMed  Google Scholar 

  60. D'Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage. 1999;10(1):6–14.

    CAS  PubMed  Google Scholar 

  61. Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A. 1998;95(3):773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL. Dissociating state and item components of recognition memory using fMRI. Neuroimage. 2001;13(1):129–42.

    CAS  PubMed  Google Scholar 

  63. Mitchell KJ, Johnson MK, Raye CL, D'Esposito M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Res Cogn Brain Res. 2000;10(1–2):197–206.

    CAS  PubMed  Google Scholar 

  64. Keppel G, Zedeck S. Data analysis for research design. New York: W.H. Freeman; 1989.

    Google Scholar 

  65. Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited—again. Neuroimage. 1995;2:173–82.

    CAS  PubMed  Google Scholar 

  66. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15(4):870–8.

    PubMed  Google Scholar 

  67. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25.

    PubMed  Google Scholar 

  68. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mumford JA. A power calculation guide for fMRI studies. Soc Cogn Affect Neurosci. 2012;7(6):738–42.

    PubMed  PubMed Central  Google Scholar 

  70. Cremers HR, Wager TD, Yarkoni T. The relation between statistical power and inference in fMRI. PLoS One. 2017;12(11):e0184923.

    PubMed  PubMed Central  Google Scholar 

  71. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013;83:550–8.

    PubMed  Google Scholar 

  72. Aguirre GK, D'Esposito M. Experimental design for brain fMRI. In: Moonen CTW, Bandettini PA, editors. Functional MRI. Berlin: Springer Verlag; 1999. p. 369–80.

    Google Scholar 

  73. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    CAS  PubMed  Google Scholar 

  74. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.

    CAS  PubMed  Google Scholar 

  75. Fang HCH. Observations on aging characteristics of cerebral blood vessels, macroscopic and microscopic features. In: Gerson S, Terry RD, editors. Neurobiology of aging. New York: Raven Press; 1976.

    Google Scholar 

  76. Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci. 2000;181(1–2):19–28.

    CAS  PubMed  Google Scholar 

  77. Schultz SK, O'Leary DS, Boles Ponto LL, Watkins GL, Hichwa RD, Andreasen NC. Age-related changes in regional cerebral blood flow among young to mid-life adults. Neuroreport. 1999;10(12):2493–6.

    CAS  PubMed  Google Scholar 

  78. Yamamoto M, Meyer JS, Sakai F, Yamaguchi F. Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol. 1980;37(8):489–96.

    CAS  PubMed  Google Scholar 

  79. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, et al. Reduction in regional cerebral rate of oxygen during human aging. Stroke. 1986;17:1220–8.

    CAS  PubMed  Google Scholar 

  80. Takada H, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Sugawara J, et al. Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurol Res. 1992;14(2 Suppl):128–31.

    CAS  PubMed  Google Scholar 

  81. Claus JJ, Breteler MM, Hasan D, Krenning EP, Bots ML, Grobbee DE, et al. Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging. 1998;19(1):57–64.

    CAS  PubMed  Google Scholar 

  82. Cunnington R, Iansek R, Bradshaw JL, Phillips JG. Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain. 1995;118(Pt 4):935–50.

    PubMed  Google Scholar 

  83. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci. 2000;12(Suppl 2):24–34.

    PubMed  Google Scholar 

  84. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.

    CAS  PubMed  Google Scholar 

  85. Hutchison JL, Lu H, Rypma B. Neural mechanisms of age-related slowing: the DeltaCBF/DeltaCMRO2 ratio mediates age-differences in BOLD signal and human performance. Cereb Cortex. 2013;23(10):2337–46.

    PubMed  Google Scholar 

  86. West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, et al. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage. 2018;188:198–207.

    PubMed  Google Scholar 

  87. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke. 2002;33(1):103–9.

    CAS  PubMed  Google Scholar 

  88. Rypma B, Prabhakaran V, Desmond JE, Gabrieli JD. Age differences in prefrontal cortical activity in working memory. Psychol Aging. 2001;16(3):371–84.

    CAS  PubMed  Google Scholar 

  89. Handwerker DA, Gonzalez-Castillo J, D'Esposito M, Bandettini PA. The continuing challenge of understanding and modeling hemodynamic variation in fMRI. Neuroimage. 2012;62(2):1017–23.

    PubMed  Google Scholar 

  90. Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4(3):346–59.

    PubMed  PubMed Central  Google Scholar 

  91. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc. 2007;13(3):526–38.

    PubMed  PubMed Central  Google Scholar 

  92. Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15(3):488–500.

    CAS  PubMed  Google Scholar 

  93. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods J Int Neuropsychol Soc. 2007;13(3):517–25.

    PubMed  Google Scholar 

  94. Fernandez-Seara MA, Wang J, Wang Z, Korczykowski M, Guenther M, Feinberg DA, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp. 2007;28(12):1391–400.

    PubMed  PubMed Central  Google Scholar 

  95. van Osch MJ, Teeuwisse WM, Chen Z, Suzuki Y, Helle M, Schmid S. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab. 2018;38(9):1461–80.

    PubMed  Google Scholar 

  96. Hernandez-Garcia L, Nielsen JF, Noll DC. Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med. 2019;81(2):1004–15.

    PubMed  Google Scholar 

  97. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20(3):353–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Haynes JD. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron. 2015;87(2):257–70.

    CAS  PubMed  Google Scholar 

  100. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001;293(5539):2425–30.

    CAS  PubMed  Google Scholar 

  101. Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval during memory search. Science. 2005;310(5756):1963–6.

    CAS  PubMed  Google Scholar 

  102. Zarahn E, Rakitin BC, Abela D, Flynn J, Stern Y. Distinct spatial patterns of brain activity associated with memory storage and search. Neuroimage. 2006;33(2):794–804.

    PubMed  Google Scholar 

  103. Kragel PA, Koban L, Barrett LF, Wager TD. Representation, pattern information, and brain signatures: from neurons to neuroimaging. Neuron. 2018;99(2):257–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Williams MA, Dang S, Kanwisher NG. Only some spatial patterns of fMRI response are read out in task performance. Nat Neurosci. 2007;10(6):685–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Buchel C, Coull JT, Friston KJ. The predictive value of changes in effective connectivity for human learning. Science. 1999;283(5407):1538–41.

    CAS  PubMed  Google Scholar 

  106. McIntosh AR, Grady CL, Haxby JV, Ungerleider LG, Horwitz B. Changes in limbic and prefrontal functional interactions in a working memory task for faces. Cereb Cortex. 1996;6(4):571–84.

    CAS  PubMed  Google Scholar 

  107. Gerstein GL, Perkel DH, Subramanian KN. Identification of functionally related neural assemblies. Brain Res. 1978;140(1):43–62.

    CAS  PubMed  Google Scholar 

  108. Penny WD, Stephan KE, Mechelli A, Friston KJ. Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage. 2004;23(Suppl 1):S264–74.

    PubMed  Google Scholar 

  109. de Marco G, Vrignaud P, Destrieux C, de Marco D, Testelin S, Devauchelle B, et al. Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas. Magn Reson Imaging. 2009;27(1):1–12.

    PubMed  Google Scholar 

  110. Stephan KE, Roebroeck A. A short history of causal modeling of fMRI data. Neuroimage. 2012;62(2):856–63.

    PubMed  Google Scholar 

  111. Sun FT, Miller LM, D'Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage. 2004;21(2):647–58.

    PubMed  Google Scholar 

  112. Sun FT, Miller LM, D'Esposito M. Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage. 2005;28(1):227–37.

    PubMed  Google Scholar 

  113. Sun FT, Miller LM, Rao AA, D'Esposito M. Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb Cortex. 2006;17(5):1227–34.

    PubMed  Google Scholar 

  114. Gazzaley A, Rissman J, Desposito M. Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci. 2004;4(4):580–99.

    PubMed  Google Scholar 

  115. Fuhrmann Alpert G, Sun FT, Handwerker D, D'Esposito M, Knight RT. Spatio-temporal information analysis of event-related BOLD responses. Neuroimage. 2007;34(4):1545–61.

    PubMed  Google Scholar 

  116. Simon HA. The architecture of complexity. Proc Am Philos Soc. 1991;106:457–76.

    Google Scholar 

  117. Simon HA. Near decomposability and complexity: how a mind resides in a brain. NSF Report 1995.

    Google Scholar 

  118. Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci U S A. 2005;102(39):13773–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Itzkovitz S, Levitt R, Kashtan N, Milo R, Itzkovitz M, Alon U. Coarse-graining and self-dissimilarity of complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;71(1 Pt 2):016127.

    Google Scholar 

  120. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    CAS  PubMed  Google Scholar 

  121. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13(5):336–49.

    CAS  PubMed  Google Scholar 

  122. Cohen JR, D'Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci. 2016;36(48):12083–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gratton C, Nomura EM, Perez F, D'Esposito M. Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J Cogn Neurosci. 2012;24(6):1275–85.

    PubMed  PubMed Central  Google Scholar 

  124. Bertolero MA, Yeo BT, D'Esposito M. The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A. 2015;112(49):E6798–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gallen CL, D'Esposito M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn Sci. 2019;23(4):293–304.

    PubMed  PubMed Central  Google Scholar 

  126. Rees G, Frith CD, Lavie N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science. 1997;278(5343):1616–9.

    CAS  PubMed  Google Scholar 

  127. Treisman AM. Strategies and models of selective attention. Psychol Rev. 1969;76(3):282–99.

    CAS  PubMed  Google Scholar 

  128. Lavie N, Tsal Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys. 1994;56(2):183–97.

    CAS  PubMed  Google Scholar 

  129. McCarthy RA, Warrington EK. Disorders of semantic memory. Philos Trans R Soc Lond B Biol Sci. 1994;346(1315):89–96.

    CAS  PubMed  Google Scholar 

  130. Warrington EST. Category specific semantic impairments. Brain. 1984;107:829–54.

    PubMed  Google Scholar 

  131. Thompson-Schill SL. Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia. 2003;41(3):280–92.

    PubMed  Google Scholar 

  132. Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A. 1997;94(26):14792–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson-Schill SL, Swick D, Farah MJ, D'Esposito M, Kan IP, Knight RT. Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci U S A. 1998;95(26):15855–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala MD. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia. 1999;37(2):207–17.

    CAS  PubMed  Google Scholar 

  135. Rushworth MF, Hadland KA, Paus T, Sipila PK. Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol. 2002;87(5):2577–92.

    CAS  PubMed  Google Scholar 

  136. Ruff CC, Bestmann S, Blankenburg F, Bjoertomt O, Josephs O, Weiskopf N, et al. Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS fMRI. Cereb Cortex. 2007;16:1479–88.

    Google Scholar 

  137. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol. 2006;16(15):1479–88.

    CAS  PubMed  Google Scholar 

  138. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science. 1999;284(5416):970–4.

    CAS  PubMed  Google Scholar 

  139. Gibbs SE, D'Esposito M. Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cogn Affect Behav Neurosci. 2005;5(2):212–21.

    PubMed  Google Scholar 

  140. Gibbs SE, D'Esposito M. A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory. Psychopharmacology (Berl). 2005;180(4):644–53.

    CAS  PubMed  Google Scholar 

  141. Gibbs SE, D'Esposito M. A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience. 2006;139(1):359–71.

    CAS  PubMed  Google Scholar 

  142. Cools R, Sheridan M, Jacobs E, D'Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27(20):5506–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Christodoulou C, DeLuca J, Ricker JH, Madigan NK, Bly BM, Lange G, et al. Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;71(2):161–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hillary FG. Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. J Int Neuropsychol Soc. 2008;14(4):526–34.

    PubMed  Google Scholar 

  145. Kelly C, Foxe JJ, Garavan H. Patterns of normal human brain plasticity after practice and their implications for neurorehabilitation. Arch Phys Med Rehabil. 2006;87(12 Suppl 2):S20–9.

    PubMed  Google Scholar 

  146. Chen AJW, D’Esposito M. Plasticity in prefrontal cortical networks after brain injury: finding the optimal paths. In: Tracy J, Hampstead B, Sathian K, editors. Cognitive plasticity in neurological disorders. New York: Oxford University Press; 2015. p. 227–57.

    Google Scholar 

  147. Kastner S, Pinsk MA. Visual attention as a multilevel selection process. Cogn Affect Behav Neurosci. 2004;4(4):483–500.

    PubMed  Google Scholar 

  148. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D'Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17(3):507–17.

    PubMed  Google Scholar 

  149. Gazzaley A, Cooney JW, Rissman J, D'Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci. 2005;8(10):1298–300.

    CAS  PubMed  Google Scholar 

  150. Poldrack RA. Imaging brain plasticity: conceptual and methodological issues—a theoretical review. Neuroimage. 2000;12(1):1–13.

    CAS  PubMed  Google Scholar 

  151. Adnan A, Chen AJW, Novakovic-Agopian T, D'Esposito M, Turner GR. Brain changes following executive control training in older adults. Neurorehabil Neural Repair. 2017;31(10–11):910–22.

    PubMed  PubMed Central  Google Scholar 

  152. Aron AR, Gluck MA, Poldrack RA. Long-term test-retest reliability of functional MRI in a classification learning task. Neuroimage. 2005;29(3):1000–6.

    PubMed  Google Scholar 

  153. Wei X, Yoo SS, Dickey CC, Zou KH, Guttmann CR, Panych LP. Functional MRI of auditory verbal working memory: long-term reproducibility analysis. Neuroimage. 2004;21(3):1000–8.

    PubMed  Google Scholar 

  154. Yoo SS, Wei X, Dickey CC, Guttmann CR, Panych LP. Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci. 2005;115(1):55–77.

    PubMed  Google Scholar 

  155. Arnemann KL, Chen AJ, Novakovic-Agopian T, Gratton C, Nomura EM, D'Esposito M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology. 2015;84(15):1568–74.

    PubMed  PubMed Central  Google Scholar 

  156. Gallen CL, Baniqued PL, Chapman SB, Aslan S, Keebler M, Didehbani N, et al. Modular brain network organization predicts response to cognitive training in older adults. PLoS One. 2016;11(12):e0169015.

    PubMed  PubMed Central  Google Scholar 

  157. Duncan ES, Small SL. Increased modularity of resting state networks supports improved narrative production in aphasia recovery. Brain Connect. 2016;6(7):524–9.

    PubMed  PubMed Central  Google Scholar 

  158. Siegel JS, Seitzman BA, Ramsey LE, Ortega M, Gordon EM, Dosenbach NUF, et al. Re-emergence of modular brain networks in stroke recovery. Cortex. 2018;101:44–59.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Kayser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kayser, A.S., Chen, A.J.W., D’Esposito, M. (2023). Functional MRI: Cognitive Neuroscience Applications. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics