Skip to main content

The Effect of Pulleys and Hooks on the Vibrations of Cable Rehabilitation Robots

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science (IFToMM Italy 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 122))

Included in the following conference series:

Abstract

Cable-driven rehabilitation devices (CDRDs) represent a widespread class of rehabilitation robots used to restore individual impaired movement capabilities by performing repetitive rehabilitation training of impaired extremities. CDRDs offer several merits, such as low inertia, high payload-to-weight ratio, modularity, simple architecture, and convenient for reconfiguration. In this paper, a model that takes into account the particular features (pulleys and magnetic hook) of the cables of a CDRD is presented. Experimental tests carried out with the modal analysis approach show that the model is able to reproduce most of the dynamic properties of the vibrating system equipped with cables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y., Yu, F., Li, Q., Chen, Y.: Configuration selection and vibration analysis of double layer suspended cable-driven parallel robot for intelligent storage system. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (eds.) ICIRA 2021. LNCS (LNAI), vol. 13013, pp. 564–574. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89095-7_54

    Chapter  Google Scholar 

  2. Chesher, C.: Robots and the moving camera in cinema, television and digital media. In: Koh, J.T.K.V., Dunstan, B.J., Silvera-Tawil, D., Velonaki, M. (eds.) CR 2015. LNCS (LNAI), vol. 9549, pp. 98–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42945-8_9

    Chapter  Google Scholar 

  3. Mao, Y., Agrawal, S.K.: Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Rob. 28(4), 922–931 (2012). https://doi.org/10.1109/TRO.2012.2189496

    Article  Google Scholar 

  4. Cafolla, D., Russo, M., Carbone, G.: Cube, a cable-driven device for limb rehabilitation. J. Bionic Eng. 16(3), 492–502 (2019). https://doi.org/10.1007/s42235-019-0040-5

    Article  Google Scholar 

  5. Fanin, C., Gallina, P., Rossi, A., Zanatta, U., Masiero, S.: Nerebot: a wire-based robot for neurorehabilitation. In: ICORR 2003, HWRS-ERC, pp. 23–27 (2003)

    Google Scholar 

  6. Laribi, M.A., Ceccarelli, M., Sandoval, J., Bottin, M., Rosati, G.: Experimental validation of light cable-driven elbow-assisting device l-cadel design. J. Bionic Eng. 19, 416–428 (2022). https://doi.org/10.1007/s42235-021-00133-5

    Article  Google Scholar 

  7. Zuccon, G., Bottin, M., Ceccarelli, M., Rosati, G.: Design and performance of an elbow assisting mechanism. Mach. 8(4), 68 (2020). https://doi.org/10.3390/machines8040068

    Article  Google Scholar 

  8. Boschetti, G., Minto, R., Trevisani, A.: Experimental investigation of a cable robot recovery strategy. Robotics 10(1), 1–18 (2021). https://doi.org/10.3390/robotics10010035

    Article  Google Scholar 

  9. Du, J., Agrawal, S.K.: Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. J. Vib. Acous. 137(2), 021020 (2015). https://doi.org/10.1115/1.4029486

    Article  Google Scholar 

  10. Mayhew, D., Bachrach, B., Rymer, W.Z., Beer, R.F.: Development of the macarm-a novel cable robot for upper limb neurorehabilitation. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 299–302. IEEE (2005). https://doi.org/10.1109/ICORR.2005.1501106

  11. Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016). https://doi.org/10.1109/RBME.2016.2552201

    Article  Google Scholar 

  12. Diao, X., Ma, O.: Vibration analysis of cable-driven parallel manipulators. Multibody Sys. Dyn. 21(4), 347–360 (2009). https://doi.org/10.1007/s11044-008-9144-0

    Article  MATH  Google Scholar 

  13. Behzadipour, S., Khajepour, A.: Stiffness of cable-based parallel manipulators with application to stability analysis (2006). https://doi.org/10.1115/1.2114890

  14. Verhoeven, R., Hiller, M., Tadokoro, S.: Workspace, stiffness, singularities and classification of tendon-driven stewart platforms. In: Advances in Robot Kinematics: Analysis and Control, pp. 105–114. Springer (1998). https://doi.org/10.1007/978-94-015-9064-8_11

  15. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(1), 13–21 (2000). https://doi.org/10.1017/S0263574799002477

    Article  Google Scholar 

  16. Khosravi, M.A., Taghirad, H.D.: Dynamic analysis and control of cable driven robots with elastic cables. Trans. Can. Soc. Mech. Eng. 35(4), 543–557 (2011). https://doi.org/10.1139/tcsme-2011-0033

    Article  Google Scholar 

  17. Tho, T.P., Thinh, N.T.: Analysis and evaluation of CDPR cable sagging based on ANFIS. Math. Probl. Eng. 2021, 20 (2021). https://doi.org/10.1155/2021/4776317

    Article  Google Scholar 

  18. Rosati, G., Andreolli, M., Biondi, A., Gallina, P.: Performance of cable suspended robots for upper limb rehabilitation. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 385–392. IEEE (2007). https://doi.org/10.1109/ICORR.2007.4428454

  19. Rosati, G., Gallina, P., Masiero, S., Rossi, A.: Design of a new 5 dof wire-based robot for rehabilitation. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 430–433. IEEE (2005). https://doi.org/10.1109/ICORR.2005.1501135

  20. Doria, A., Cocuzza, S., Comand, N., Bottin, M., Rossi, A.: Analysis of the compliance properties of an industrial robot with the Mozzi axis approach. Robotics 8(3), 80 (2019). https://doi.org/10.3390/robotics8030080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Zuccon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuccon, G., Tang, L., Doria, A., Bottin, M., Minto, R., Rosati, G. (2022). The Effect of Pulleys and Hooks on the Vibrations of Cable Rehabilitation Robots. In: Niola, V., Gasparetto, A., Quaglia, G., Carbone, G. (eds) Advances in Italian Mechanism Science. IFToMM Italy 2022. Mechanisms and Machine Science, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-10776-4_32

Download citation

Publish with us

Policies and ethics