Skip to main content

Abstract

Machine learning is a field of science where a mathematical model learns to represent, classify, regress, or cluster data and/or makes appropriate decisions. This book introduces dimensionality reduction, also known as manifold learning, which is a field of machine learning. Dimensionality reduction transforms data to another lower-dimensional subspace for better representation of data. This chapter defines dimensionality reduction and enumerates its main categories as an introduction to the next chapters of the book.

The world is in the Hilbert space,

And is vast and all-encompassing.

But it is so simple,

And falls on a low-dimensional submanifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A learning algorithm for Boltzmann machines”. In: Cognitive science 9.1 (1985), pp. 147–169.

    Google Scholar 

  2. Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and generalization in overparameterized neural networks, going beyond two layers”. In: Advances in neural information processing systems 32 (2019).

    Google Scholar 

  3. Jonathan L Alperin. Local representation theory: Modular representations as an introduction to the local representation theory of finite groups. Vol. 11. Cambridge University Press, 1993.

    Google Scholar 

  4. Shaeela Ayesha, Muhammad Kashif Hanif, and Ramzan Talib. “Overview and comparative study of dimensionality reduction techniques for high dimensional data”. In: Information Fusion 59 (2020), pp. 44–58.

    Google Scholar 

  5. Elnaz Barshan et al. “Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds”. In: Pattern Recognition 44.7 (2011), pp. 1357–1371.

    Google Scholar 

  6. Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps and spectral techniques for embedding and clustering”. In: Advances in neural information processing systems 14 (2001), pp. 585–591.

    Google Scholar 

  7. Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A review and new perspectives”. In: IEEE transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1798–1828.

    Google Scholar 

  8. Yoshua Bengio et al. “Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering”. In: Advances in neural information processing systems 16 (2003), pp. 177–184.

    Google Scholar 

  9. Yoshua Bengio et al. Spectral clustering and kernel PCA are learning eigenfunctions. Tech. rep. Departement d’Informatique et Recherche Operationnelle, Technical Report 1239, 2003.

    Google Scholar 

  10. Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training algorithm for optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Computational learning theory. 1992, pp. 144–152.

    Google Scholar 

  11. Jane Bromley et al. “Signature verification using a “Siamese” time delay neural network”. In: International Journal of Pattern Recognition and Artificial Intelligence 7.04 (1993), pp. 669–688.

    Google Scholar 

  12. Lawrence Cayton. Algorithms for manifold learning. Tech. rep. University of California at San Diego, 2005.

    Google Scholar 

  13. Trevor F Cox and Michael AA Cox. Multidimensional scaling. Chapman and hall/CRC, 2000.

    Google Scholar 

  14. Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. “Testing the manifold hypothesis”. In: Journal of the American Mathematical Society 29.4 (2016), pp. 983–1049.

    Google Scholar 

  15. Ronald A Fisher. “The use of multiple measurements in taxonomic problems”. In: Annals of eugenics 7.2 (1936), pp. 179–188.

    Google Scholar 

  16. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 2. Springer series in statistics New York, NY, USA, 2009.

    Google Scholar 

  17. Benjamin Fruchter. Introduction to factor analysis. Van Nostrand, 1954.

    MATH  Google Scholar 

  18. Kenji Fukumizu, Francis R Bach, and Michael I Jordan. “Kernel dimensionality reduction for supervised learning”. In: Advances in neural information processing systems. Vol. 16. 2003.

    Google Scholar 

  19. Benyamin Ghojogh. “Data Reduction Algorithms in Machine Learning and Data Science”. PhD thesis. University of Waterloo, 2021.

    Google Scholar 

  20. Benyamin Ghojogh, Fakhri Karray, and Mark Crowley. “Eigenvalue and generalized eigenvalue problems: Tutorial”. In: arXiv preprint arXiv:1903.11240 (2019).

    Google Scholar 

  21. Benyamin Ghojogh, Fakhri Karray, and Mark Crowley. “Generalized subspace learning by Roweis discriminant analysis”. In: International Conference on Image Analysis and Recognition. Springer. 2020, pp. 328–342.

    Google Scholar 

  22. Benyamin Ghojogh et al. “Feature selection and feature extraction in pattern analysis: A literature review”. In: arXiv preprint arXiv:1905.02845 (2019).

    Google Scholar 

  23. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural networks”. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 315–323.

    Google Scholar 

  24. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

    MATH  Google Scholar 

  25. Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. Vol. 27. 2014.

    Google Scholar 

  26. Arthur Gretton et al. “Measuring statistical dependence with Hilbert-Schmidt norms”. In: International conference on algorithmic learning theory. Springer. 2005, pp. 63–77.

    Google Scholar 

  27. Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by learning an invariant mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) Vol. 2. IEEE. 2006, pp. 1735–1742.

    Google Scholar 

  28. Ji Hun Ham et al. “A kernel view of the dimensionality reduction of manifolds”. In: International Conference on Machine Learning. 2004.

    Google Scholar 

  29. Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

    Google Scholar 

  30. Geoffrey E Hinton and Sam T Roweis. “Stochastic neighbor embedding”. In: Advances in neural information processing systems. 2003, pp. 857–864.

    Google Scholar 

  31. Geoffrey E Hinton and Terrence J Sejnowski. “Optimal perceptual inference”. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition Vol. 448. IEEE, 1983.

    Google Scholar 

  32. Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. “Kernel methods in machine learning”. In: The annals of statistics (2008), pp. 1171–1220.

    Google Scholar 

  33. William B Johnson and Joram Lindenstrauss. “Extensions of Lipschitz mappings into a Hilbert space”. In: Contemporary mathematics 26 (1984).

    Google Scholar 

  34. Ian Jolliffe. Principal component analysis. Springer, 2011.

    MATH  Google Scholar 

  35. Mahmut Kaya and Hasan S ̧akir Bilge. “Deep metric learning: A survey”. In: Symmetry 11.9 (2019), p. 1066.

    Google Scholar 

  36. Diederik P Kingma and Max Welling. “Auto-encoding variational Bayes”. In: International Conference on Learning Representations. 2014.

    Google Scholar 

  37. John A Lee and Michel Verleysen. Nonlinear dimensionality reduction Springer Science & Business Media, 2007.

    Google Scholar 

  38. John M Lee. Introduction to Smooth Manifolds. Springer Science & Business Media, 2013, pp. 1–31.

    Google Scholar 

  39. Ker-Chau Li. “Sliced inverse regression for dimension reduction”. In: Journal of the American Statistical Association 86.414 (1991), pp. 316–327.

    Google Scholar 

  40. Tong Lin and Hongbin Zha. “Riemannian manifold learning”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30.5 (2008), pp. 796–809.

    Google Scholar 

  41. Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In: Journal of machine learning research 9.Nov (2008), pp. 2579–2605.

    Google Scholar 

  42. Alireza Makhzani et al. “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644 (2015).

    Google Scholar 

  43. Leland McInnes, John Healy, and James Melville. “UMAP: Uniform manifold approximation and projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426 (2018).

    Google Scholar 

  44. Sebastian Mika et al. “Fisher discriminant analysis with kernels”. In: Proceedings of the 1999 IEEE signal processing society workshop on Neural networks for signal processing IX. IEEE. 1999, pp. 41–48.

    Google Scholar 

  45. Sebastian Mika et al. “Invariant feature extraction and classification in kernel spaces”. In: Advances in neural information processing systems. 2000, pp. 526–532.

    Google Scholar 

  46. Andrew Ng, Michael Jordan, and Yair Weiss. “On spectral clustering: Analysis and an algorithm”. In: Advances in neural information processing systems 14 (2001), pp. 849–856.

    Google Scholar 

  47. Karl Pearson. “LIII. On lines and planes of closest fit to systems of points in space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1901), pp. 559–572.

    Google Scholar 

  48. Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”. In: Advances in neural information processing systems. Vol. 20. 2007.

    Google Scholar 

  49. Ali Rahimi and Benjamin Recht. “Weighted sums of random kitchen sinks: replacing minimization with randomization in learning”. In: Advances in neural information processing systems. 2008, pp. 1313–1320.

    Google Scholar 

  50. Sam Roweis. “EM algorithms for PCA and SPCA”. In: Advances in neural information processing systems 10 (1997), pp. 626–632.

    Google Scholar 

  51. Sam T Roweis and Lawrence K Saul. “Nonlinear dimensionality reduction by locally linear embedding”. In: Science 290.5500 (2000), pp. 2323–2326.

    Google Scholar 

  52. John W Sammon. “A nonlinear mapping for data structure analysis”. In: IEEE Transactions on computers 100.5 (1969), pp. 401–409.

    Google Scholar 

  53. Lawrence K Saul and Sam T Roweis. “Think globally fit locally: unsupervised learning of low dimensional manifolds”. In: Journal of machine learning research 4.Jun (2003), pp. 119–155.

    Google Scholar 

  54. Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. “Kernel principal component analysis”. In: International conference on artificial neural networks. Springer. 1997, pp. 583–588.

    Google Scholar 

  55. Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. “Nonlinear component analysis as a kernel eigenvalue problem”. In: Neural computation 10.5 (1998), pp. 1299–1319.

    Google Scholar 

  56. Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A unified embedding for face recognition and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 815–823.

    Google Scholar 

  57. Ravid Shwartz-Ziv and Naftali Tishby. “Opening the black box of deep neural networks via information”. In: arXiv preprint arXiv:1703.00810 (2017).

    Google Scholar 

  58. Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. “Theoretical insights into the optimization landscape of over-parameterized shallow neural networks”. In: IEEE Transactions on Information Theory 65.2 (2018), pp. 742–769.

    Google Scholar 

  59. Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

    Google Scholar 

  60. Harry Strange and Reyer Zwiggelaar. Open Problems in Spectral Dimensionality Reduction. Springer, 2014.

    Book  MATH  Google Scholar 

  61. Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global geometric framework for nonlinear dimensionality reduction”. In: Science 290.5500 (2000), pp. 2319–2323.

    Google Scholar 

  62. Michael E Tipping and Christopher M Bishop. “Probabilistic principal component analysis”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61.3 (1999), pp. 611–622.

    Google Scholar 

  63. Naftali Tishby, Fernando C Pereira, and William Bialek. “The information bottleneck method”. In: The 37th annual Allerton Conference on Communication, Control, and Computing 1999, pp. 368–377.

    Google Scholar 

  64. Jianzhong Wang. Geometric structure of high-dimensional data and dimensionality reduction. Vol. 5. Springer, 2012.

    Google Scholar 

  65. Kilian Q Weinberger and Lawrence K Saul. “An introduction to nonlinear dimensionality reduction by maximum variance unfolding”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 6. 2006, pp. 1683–1686.

    Google Scholar 

  66. Kilian Q Weinberger, Fei Sha, and Lawrence K Saul. “Learning a kernel matrix for nonlinear dimensionality reduction”. In: Proceedings of the twenty-first international conference on Machine learning. 2004, p. 106.

    Google Scholar 

  67. Yair Weiss. “Segmentation using eigenvectors: a unifying view”. In: Proceedings of the seventh IEEE international conference on computer vision. Vol. 2. IEEE. 1999, pp. 975–982.

    Google Scholar 

  68. Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. “Exponential Family Harmoniums with an Application to Information Retrieval.” In: Advances in neural information processing systems. Vol. 4. 2004, pp. 1481–1488.

    Google Scholar 

  69. Liu Yang and Rong Jin. “Distance metric learning: A comprehensive survey”. In: Michigan State University 2.2 (2006), p. 4.

    Google Scholar 

  70. Guoqiang Zhong et al. “An overview on data representation learning: From traditional feature learning to recent deep learning”. In: The Journal of Finance and Data Science 2.4 (2016), pp. 265–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghojogh, B., Crowley, M., Karray, F., Ghodsi, A. (2023). Introduction. In: Elements of Dimensionality Reduction and Manifold Learning. Springer, Cham. https://doi.org/10.1007/978-3-031-10602-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10602-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10601-9

  • Online ISBN: 978-3-031-10602-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics