Skip to main content

Coding Cross Sections of an Electron Charge Transfer Process

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The paper presents the algorithm of a code written for computing the cross section for a charge transfer process involving a neutral molecule and a monatomic ion. The entrance and exit potential energy surfaces, driving the collision dynamics, are computed employing the Improved Lennard-Jones function that accounts for the role of non-electrostatic forces, due to size repulsion plus dispersion and induction attraction. In addition, electrostatic components, affecting the entrance channels, are evaluated as sum of Coulomb contributions, determined by the He\(^+\) ion interacting with the charge distribution on the molecular frame. The cross section is estimated by employing the Landau-Zener-Stückelberg approach. The code implemented has been employed in systems involving helium cation and a small organic molecule, such as methanol, dimethyl ether and methyl formate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire, B.A.: 2021 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 259(2), 30 (2022). https://doi.org/10.3847/1538-4365/ac2a48

    Article  Google Scholar 

  2. Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS. A &A 370(3), L49–L52 (2001). https://doi.org/10.1051/0004-6361:20010367. https://cdms.astro.uni-koeln.de/classic/molecules. Accessed 13 Apr 2022

  3. Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742(1), 215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027

    Article  Google Scholar 

  4. Endres, C.P., Schlemmer, S., Schilke, P., Stutzki, J., Müller, H.S.: The cologne database for molecular spectroscopy, CDMS, in the virtual atomic and molecular data centre, VAMDC. J. Mol. Spectro. 327, 95–104 (2016). https://doi.org/10.1016/j.jms.2016.03.005. New Visions of Spectroscopic Databases, Volume II

  5. Herbst, E., Van Dishoeck, E.F.: Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427–480 (2009)

    Article  Google Scholar 

  6. Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions. Astrophys. J. 850(2), 176 (2017)

    Article  Google Scholar 

  7. López-Sepulcre, A., Balucani, N., Ceccarelli, C., Codella, C., Dulieu, F., Theule, P.: Interstellar formamide (NH\(_{2}\)CHO), a key prebiotic precursor. ACS Earth Space Chem. 3(10), 2122–2137 (2019). https://doi.org/10.1021/acsearthspacechem.9b00154

    Article  Google Scholar 

  8. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20(1), 1–68 (2012). https://doi.org/10.1007/s00159-012-0056-x

    Article  Google Scholar 

  9. Herbst, E.: The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 36(2), 287–331 (2017)

    Article  Google Scholar 

  10. Agúndez, M., Wakelam, V.: Chemistry of dark clouds: databases, networks, and models. Chem. Rev. 113(12), 8710–8737 (2013)

    Article  Google Scholar 

  11. Taquet, V., Ceccarelli, C., Kahane, C.: Multilayer modeling of porous grain surface chemistry-I. The GRAINOBLE model. Astron. Astrophys. 538, A42 (2012)

    Article  Google Scholar 

  12. Garrod, R., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006)

    Article  Google Scholar 

  13. Vasyunin, A.I., Caselli, P., Dulieu, F., Jiménez-Serra, I.: Formation of complex molecules in prestellar cores: a multilayer approach. Astrophys. J. 842(1), 33 (2017)

    Article  Google Scholar 

  14. Garrod, R.T., Weaver, S.L.W., Herbst, E.: Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. Astrophys. J. 682(1), 283 (2008)

    Article  Google Scholar 

  15. Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Monthly Notices R. Astron. Soc. Lett. 449(1), L16–L20 (2015)

    Article  Google Scholar 

  16. Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. Astrophys. J. 854(2), 135 (2018)

    Article  Google Scholar 

  17. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic Sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018). https://doi.org/10.1016/j.cplett.2018.01.053

    Article  Google Scholar 

  18. Wakelam, V., et al.: A kinetic database for astrochemistry (KIDA). ApJS 199(1), 21 (2012). https://doi.org/10.1088/0067-0049/199/1/21

    Article  Google Scholar 

  19. Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006*. A &A 466(3), 1197–1204 (2007). https://doi.org/10.1051/0004-6361:20064981

    Article  Google Scholar 

  20. Mallard, W., Linstrom, P.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD 20899 (2000). https://doi.org/10.18434/T4D303

  21. Lepp, S., Stancil, P., Dalgarno, A.: Atomic and molecular processes in the early Universe. J. Phys. B: At. Mol. Opt. Phys. 35(10), R57 (2002)

    Article  Google Scholar 

  22. De Fazio, D.: The H + HeH\(^+\)\(\rightarrow \) He\(^+\) H\(_2^+\) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants. Phys. Chem. Chem. Phys. 16(23), 11662–11672 (2014). https://doi.org/10.1039/C4CP00502C

    Article  Google Scholar 

  23. Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10(36), 5489–5503 (2008)

    Article  Google Scholar 

  24. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100

    Article  Google Scholar 

  25. Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^+\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008). https://doi.org/10.1039/B808200F

    Article  Google Scholar 

  26. Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N\(_{2}\)-H\(_{2}\) and N\(_{2}\)-N\(_{2}\) complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008). https://doi.org/10.1039/B803961E

    Article  Google Scholar 

  27. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_{2}\) + N\(_{2}\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415

    Article  Google Scholar 

  28. Candori, R., et al.: Structure and charge transfer dynamics of the (Ar-N\(_2\))\(^+\) molecular cluster. J. Chem. Phys. 115(19), 8888–8898 (2001). https://doi.org/10.1063/1.1413980

    Article  Google Scholar 

  29. Candori, R., Pirani, F., Cappelletti, D., Tosi, P., Bassi, D.: State-to-state cross-sections for N\(_2^+\) (\(X, \nu ^{\prime }\) = 1,2) + Ar and Ar\(^+\)(\(^2\)P\(_{j, mj}\)) + N\(_2\) (\(X, \nu \) = 0) at low energies. Int. J. Mass Spectrom. 223, 499–506 (2003). https://doi.org/10.1016/S1387-3806(02)00873-4

    Article  Google Scholar 

  30. Cernuto, A., Tosi, P., Martini, L.M., Pirani, F., Ascenzi, D.: Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Phys. Chem. Chem. Phys. 19(30), 19554–19565 (2017). https://doi.org/10.1039/C7CP00827A

    Article  Google Scholar 

  31. Landau, L.: On the theory of transfer of energy at collisions II. Physikalische Zeitschrift der Sowjetunion 2, 46–51 (1932)

    Google Scholar 

  32. Zener, C.: Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). https://doi.org/10.1098/rspa.1932.0165

  33. Stückelberg, E.C.G.: Theory of inelastic collisions between atoms. Helv. Phys. Acta 5, 369–423 (1932). https://doi.org/10.5169/seals-110177

    Article  Google Scholar 

  34. Nikitin, E.E., Umanskii, S.Y.: Theory of slow atomic collisions (1984). https://doi.org/10.1007/978-3-642-82045-8

  35. Nikitin, E.E.: Nonadiabatic transitions: what we learned from old masters and how much we owe them. Annu. Rev. Phys. Chem. 50(1), 1–21 (1999). https://doi.org/10.1146/annurev.physchem.50.1.1

    Article  Google Scholar 

  36. Cernuto, A., Pirani, F., Martini, L.M., Tosi, P., Ascenzi, D.: The selective role of long-range forces in the stereodynamics of ion-molecule reactions: the He\(^+\) + Methyl Formate case from guided-ion-beam experiments. ChemPhysChem 19(1), 51–59 (2018). https://doi.org/10.1002/cphc.201701096

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Andrea Cernuto who originally developed the code. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO). The authors thank the Herla Project (http://www.hpc.unipg.it/hosting/vherla/vherla.html) - Università degli Studi di Perugia for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”. N. F.-L thanks MIUR and the University of Perugia for the financial support of the AMIS project through the “Dipartimenti di Eccellenza” programme. N.F.-L. also acknowledges the Fondo Ricerca di Base 2021 (RICBASE2021FAGINAS) del Dipartimento di Chimica, Biologia e Biotecnologie della Università di Perugia for financial support. D.A. and M.R. acknowledge funding from MUR PRIN 2020 project n. 2020AFB3FX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emília Valença Ferreira de Aragão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aragão, E.V.F. et al. (2022). Coding Cross Sections of an Electron Charge Transfer Process. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics