Skip to main content

Confinement of CO\(_{2}\) Inside (20,0) Single-Walled Carbon Nanotubes

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

We present a preliminary report based on molecular dynamics (MD) simulations to study CO\(_{2}\) adsorption on flexible single-walled carbon nanotubes (SWCNTs) of (20,0) size. The adsorption capacities of (20,0) SWCNT were simulated at different temperatures and the effects of its diameter and chirality were compared with a previous work of our group. The potential energy surfaces have been described by implementing the Improved Lennard Jones (ILJ) potential to specifically model the intermolecular interactions involving CO\(_{2}\)-CO\(_2\) and CO\(_{2}\)-SWCNT pairs. The intramolecular interactions within the SWCNT were considered explicitly by employing the Morse and Harmonic potentials. These specialized potentials are well capable of defining CO\(_{2}\) confinement through physisorption and guarantee a quantitative description and realistic results of molecular dynamics. Flexible (20,0) SWCNT can adsorb up to 32 wt% at 273 K, thus as sizable carbon structured materials, SWCNTs are potentially suitable for CO\(_{2}\) confinement and storage to cope with CO\(_{2}\) gas emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPA-United States Environmental Protection Agency: Climate Change Indicators in the United States: Global Greenhouse Gas Emissions (2016)

    Google Scholar 

  2. Smit, B.: Carbon capture and storage: introductory lecture. Faraday Discuss. 192, 9–25 (2016)

    Article  Google Scholar 

  3. World Resources Institute: Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s Climate Data Explorer

    Google Scholar 

  4. Bui, M., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018)

    Article  Google Scholar 

  5. Joos, L., Huck, J.M., Van Speybroeck, V., Smit, B.: Cutting the cost of carbon capture: a case for carbon capture and utilization. Faraday Discuss. 192, 391–414 (2016)

    Article  Google Scholar 

  6. Dai, N., Mitch, W.A.: Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO\(_{2}\) capture systems. Environ. Sci. Technol. 48(13), 7519–7526 (2014)

    Article  Google Scholar 

  7. Huck, J.M., et al.: Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014)

    Article  Google Scholar 

  8. Zhang, S., Shen, Y., Shao, P., Chen, J., Wang, L.: Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO\(_{2}\) capture from flue gas. Environ. Sci. Technol. 52(6), 3660–3668 (2018)

    Article  Google Scholar 

  9. Liu, H., et al.: A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014)

    Article  Google Scholar 

  10. Lu, A.H., Hao, G.P.: Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 109, 484–503 (2013)

    Article  Google Scholar 

  11. Li, J.R., et al.: Porous materials with pre-designed single-molecule traps for CO\(_{2}\) selective adsorption. Nat. Commun. 4, 1538 (2014)

    Article  Google Scholar 

  12. Hu, X.E., et al.: A review of n-functionalized solid adsorbents for post-combustion CO\(_{2}\) capture. Appl. Energy 260, 114244 (2020)

    Article  Google Scholar 

  13. Du, H., Li, J., Zhang, J., Su, G., Li, X., Zhao, Y.: Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115(47), 23261–23266 (2011)

    Article  Google Scholar 

  14. Kim, J., Lin, L.C., Swisher, J.A., Haranczyk, M., Smit, B.: Predicting large CO\(_{2}\) adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J. Am. Chem. Soc. 134(46), 18940–18943 (2012)

    Article  Google Scholar 

  15. Liu, B., Smit, B.: Molecular simulation studies of separation of CO\(_{2}\)/N\(_{2}\), CO\(_{2}\)/CH\(_{4}\), and CH\(_{4}\)/N\(_{2}\) by ZIFs. J. Phys. Chem. C 114(18), 8515–8522 (2010)

    Article  Google Scholar 

  16. Schrier, J.: Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4(7), 3745–3752 (2012)

    Article  Google Scholar 

  17. Zeng, Y., Zou, R., Zhao, Y.: Covalent organic frameworks for CO\(_{2}\) capture. Adv. Mater. 28(15), 2855–2873 (2016)

    Article  Google Scholar 

  18. Xiang, Z., et al.: Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J. Am. Chem. Soc. 137(41), 13301–13307 (2015)

    Article  Google Scholar 

  19. Yu, J., Xie, L.H., Li, J.R., Ma, Y., Seminario, J.M., Balbuena, P.B.: CO\(_{2}\) capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117(14), 9674–9754 (2017)

    Article  Google Scholar 

  20. Lin, L.C., et al.: Understanding CO\(_{2}\) dynamics in metal-organic frameworks with open metal sites. Angew. Chem. Int. Ed. 52(16), 4410–4413 (2013)

    Article  Google Scholar 

  21. Srinivas, G., Krungleviciute, V., Guo, Z.X., Yildirim, T.: Exceptional CO\(_{2}\) capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014)

    Article  Google Scholar 

  22. Ganesan, A., Shaijumon, M.: Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2015)

    Article  Google Scholar 

  23. Ghosh, S., Sevilla, M., Fuertes, A.B., Andreoli, E., Ho, J., Barron, A.R.: Defining a performance map of porous carbon sorbents for high-pressure carbon dioxide uptake and carbon dioxide-methane selectivity. J. Mater. Chem. A 4, 14739–14751 (2016)

    Article  Google Scholar 

  24. Bartolomei, M., Carmona-Novillo, E., Giorgi, G.: First principles investigation of hydrogen physical adsorption on graphynes’ layers. Carbon 95, 1076–1081 (2015)

    Article  Google Scholar 

  25. Apriliyanto, Y.B., Battaglia, S., Evangelisti, S., Faginas-Lago, N., Leininger, T., Lombardi, A.: Toward a generalized hückel rule: the electronic structure of carbon nanocones. J. Phys. Chem. A 125(45), 9819–9825 (2021)

    Article  Google Scholar 

  26. Lithoxoos, G.P., Labropoulos, A., Peristeras, L.D., Kanellopoulos, N., Samios, J., Economou, I.G.: Adsorption of N\(_{2}\), CH\(_{4}\), CO and CO\(_{2}\) gases in single walled carbon nanotubes: A combined experimental and monte carlo molecular simulation study. J. Supercrit. Fluids 55(2), 510–523 (2010)

    Article  Google Scholar 

  27. Lombardi, A., Lago, N.F., Laganà, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B. (ed.) ICCSA 2012. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_30

    Chapter  Google Scholar 

  28. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO\(_{2}\) molecules: Cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)

    Article  Google Scholar 

  29. Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Bartocci, A., Lombardi, A., Lago, N.F., Pirani, F.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B. (ed.) ICCSA 2013. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_6

    Chapter  Google Scholar 

  30. DuBay, K.H., Hall, M.L., Hughes, T.F., Wu, C., Reichman, D.R., Friesner, R.A.: Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput. 8(11), 4556–4569 (2012)

    Article  Google Scholar 

  31. Rahimi, M., Singh, J.K., Babu, D.J., Schneider, J.J., Müller-Plathe, F.: Understanding carbon dioxide adsorption in carbon nanotube arrays: molecular simulation and adsorption measurements. J. Phys. Chem. C 117(26), 13492–13501 (2013)

    Article  Google Scholar 

  32. Alexiadis, A., Kassinos, S.: Molecular dynamic simulations of carbon nanotubes in CO\(_{2}\) atmosphere. Chem. Phys. Lett. 460(4–6), 512–516 (2008)

    Article  Google Scholar 

  33. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Confinement of \(\text{ CO}_{2}\) inside carbon nanotubes. Eur. Phys. J. D 75(5), 1–10 (2021). https://doi.org/10.1140/epjd/s10053-021-00176-7

    Article  Google Scholar 

  34. Faginas-Lago, N., Yeni, D., Huarte, F., Wang, Y., Alcamí, M., Martin, F.: Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120(32), 6451–6458 (2016)

    Article  Google Scholar 

  35. Pirani, P., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the lennard-jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Article  Google Scholar 

  36. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. In: Murgante, B. (ed.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  37. Albertí, M., Lago, N.F.: Ion size influence on the Ar solvation shells of M\(^{+}\)C\(_{6}\)F\(_{6}\) clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116(12), 3094–3102 (2012)

    Article  Google Scholar 

  38. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004)

    Article  Google Scholar 

  39. Lombardi, A., Pirani, F., Laganà, A., Bartolomei, M.: Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO\(_{2}\)-N\(_{2}\) collisions: Selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37(16), 1463–1475 (2016)

    Article  Google Scholar 

  40. Apriliyanto, Y.B., Faginas Lago, N., Lombardi, A., Evangelisti, S., Bartolomei, M., Leininger, T., Pirani, F.: Nanostructure selectivity for molecular adsorption and separation: the case of graphyne layers. J. Phys. Chem. C 122(28), 16195–16208 (2018)

    Article  Google Scholar 

  41. Pacifici, L., Verdicchio, M., Lago, N.F., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_2\) + N\(_2\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)

    Article  Google Scholar 

  42. Faginas Lago, N., Huarte Larrañaga, F., Albertí, M.: On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur. Phys. J. D 55(1), 75–85 (2009). https://doi.org/10.1140/epjd/e2009-00215-5

    Article  Google Scholar 

  43. Albertí, M., Lago, N.F.: Competitive solvation of K\(^{+}\) by C\(_{6}\)H\(_{6}\) and H\(_{2}\)O in the K\(^{+}\)-(C\(_{6}\)H\(_{6}\))\(_{n}\)-(H\(_{2}\)O)\(_{m}\) (n=1-4; m=1-6) aggregates. Eur. Phys. J. D 67(4), 73 (2013). https://doi.org/10.1140/epjd/e2013-30753-x

    Article  Google Scholar 

  44. Faginas-Lago, N., Lombardi, A., Albertí, M., Grossi, G.: Accurate analytic intermolecular potential for the simulation of Na\(^{+}\) and K\(^{+}\) ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)

    Article  Google Scholar 

  45. Faginas Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theor. Chem. Acc. 135(7), 1–9 (2016). https://doi.org/10.1007/s00214-016-1914-9

    Article  Google Scholar 

  46. Lombardi, A., Faginas-Lago, N., Gaia, G., Federico, P., Aquilanti, V.: Collisional energy exchange in CO\(_2\)–N\(_2\) gaseous mixtures. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 246–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_19

    Chapter  Google Scholar 

  47. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Carbon capture and separation from CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O gaseous mixtures in bilayer graphtriyne: a molecular dynamics study. In: Gervasi, O. (ed.) ICCSA 2020. LNCS, vol. 12255, pp. 489–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_36

    Chapter  Google Scholar 

  48. Smith, W., Yong, C., Rodger, P.: DL_POLY: application to molecular simulation. Mol. Simul. 28(5), 385–471 (2002)

    Article  MATH  Google Scholar 

  49. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–8 (1996)

    Article  Google Scholar 

  50. Vekeman, J., Sánchez-Marín, J., de Sánchez Merás, A., Garcia Cuesta, I., Faginas-Lago, N.: Flexibility in the graphene sheet: the influence on gas adsorption from molecular dynamics studies. J. Phys. Chem. C 123(46), 28035–28047 (2019)

    Article  Google Scholar 

  51. Faginas-Lago, N., Apriliyanto, Y.B., Lombardi, A.: Molecular simulations of CO\(_{2}\)/N\(_{2}\)/H\(_{2}\)O gaseous mixture separation in graphtriyne membrane. In: Misra, S. (ed.) ICCSA 2019. LNCS, vol. 11624, pp. 374–387. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_27

    Chapter  Google Scholar 

  52. Apriliyanto, Y.B., Darmawan, N., Faginas-Lago, N., Lombardi, A.: Two-dimensional diamine-linked covalent organic frameworks for CO\(_2\)/N\(_2\) capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22, 25918–25929 (2020)

    Article  Google Scholar 

  53. Spanopoulos, I., et al.: Exceptional gravimetric and volumetric CO\(_{2}\) uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO\(_{2}\) interactions. Chem. Commun. 52(69), 10559–10562 (2016)

    Article  Google Scholar 

  54. Rodríguez-García, S., et al.: Role of the structure of graphene oxide sheets on the CO\(_{2}\) adsorption properties of nanocomposites based on graphene oxide and polyaniline or Fe\(_3\)O\(_4\)-nanoparticles. ACS Sustain. Chem. Eng. 7(14), 12464–12473 (2019)

    Google Scholar 

  55. Osler, K., Dheda, D., Ngoy, J., Wagner, N., Daramola, M.O.: Synthesis and evaluation of carbon nanotubes composite adsorbent for CO\(_{2}\) capture: a comparative study of CO\(_{2}\) adsorption capacity of single-walled and multi-walled carbon nanotubes. Int. J. Coal Sci. Technol. 4(1), 41–49 (2017). https://doi.org/10.1007/s40789-017-0157-2

    Article  Google Scholar 

  56. Patzsch, J., Babu, D.J., Schneider, J.J.: Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption. Beilstein J. Nanotechnol. 8(1), 1135–1144 (2017)

    Article  Google Scholar 

  57. Cavalcanti, L.P., Kalantzopoulos, G.N., Eckert, J., Knudsen, K.D., Fossum, J.O.: A nano-silicate material with exceptional capacity for CO\(_{2}\) capture and storage at room temperature. Sci. Rep. 8(1), 1–6 (2018)

    Article  Google Scholar 

  58. Puthusseri, D., Babu, D.J., Okeil, S., Schneider, J.J.: Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes. Phys. Chem. Chem. Phys. 19(38), 26265–26271 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank MUR and University of Perugia for their support through the AMIS project “Dipartimenti di Eccellenza 2018–2022”. NFL, AL and LP thank the Department of Chemistry, Biology and Biotechnology, University of Perugia for funding under the program “Fondo Ricerca di Base 2021” (RICBASE2021FAGINAS). NFL and AL also acknowledge support for allocation of computing time from the Oklahoma University Supercomputing Center for Education & Research (OSCER). N.F-L and A. L acknowledge also Fondazione Cassa di Risparmio di Perugia n. 220.0513 to C.E. This work is supported by a grant from Fondazione Cassa di Risparmio di Perugia n.# 220.0513 to C.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Faginas-Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faginas-Lago, N., Lombardi, A., Apriliyanto, Y.B., Pacifici, L. (2022). Confinement of CO\(_{2}\) Inside (20,0) Single-Walled Carbon Nanotubes. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics