Skip to main content

Theoretical Study of the Reaction O(3P) + 1,2-Butadiene

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

The triplet and singlet potential energy surfaces of the O(3P) + 1,2-butadiene reaction have been investigated by electronic structure calculations at the coupled-cluster (CCSD(T)(aug-cc-pVTZ) level. We focused our attention, in particular, on the different sites of attack of atomic oxygen to 1, 2-butadiene. The results for minima, transition states and reaction channel energetics are compared with the results of previous CCSD(T)(aug-cc-pVTZ)-CBS and CASPT2 calculations to explore the adequacy of simpler computational schemes for discussing the reaction dynamics, in particular the product branching fractions derived from crossed molecular beam experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schobert, H.: Chemistry of Fossil Fuels and Biofuels. Cambridge University Press, Cambridge, UK (2013)

    Book  Google Scholar 

  2. Frenklach, M., Clary, D.W., Gardiner, W.C., Stein, S.E.: Effect of fuel structure on pathways to soot. Symp. Int. Combust. 21, 1067–1076 (1988)

    Article  Google Scholar 

  3. Gardiner, W.C.: Gas-Phase Combustion Chemistry. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1310-9

    Book  Google Scholar 

  4. Kohse-Höinghaus, K., et al.: Biofuel combustion chemistry: from ethanol to biodiesel. Ang. Chem. Int. Ed. 49, 3572–3597 (2010)

    Article  Google Scholar 

  5. Wayne, R.P.: Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and Their Satellites, 3rd edn ACS Publications, Washington, D.C. (2000)

    Google Scholar 

  6. Sabbah, H., Biennier, L., Sims, I.R., Georgievskii, Y., Klippenstein, S.J., Smith, I.W.M.: Understanding reactivity at very low temperatures: the reactions of oxygen atoms with alkenes. Science 317, 102–105 (2007)

    Article  Google Scholar 

  7. Occhiogrosso, A., Viti, S., Balucani, N.: An improved chemical scheme for the reactions of atomic oxygen and simple unsaturated hydrocarbons - implications for star-forming regions. MNRAS 432, 3423–3430 (2013)

    Article  Google Scholar 

  8. Simmie, J.M.: Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Progr. Energy Combust. Sci. 29, 599–634 (2003)

    Article  Google Scholar 

  9. Cvetanović, R.J.: Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons. J. Phys. Chem. Ref. Data 16, 261–326 (1987)

    Article  Google Scholar 

  10. Casavecchia, P., Leonori, F., Balucani, N.: Reaction dynamics of oxygen atoms with unsaturated hydrocarbons from crossed molecular beam studies: primary products, branching ratios and role of intersystem crossing. Int. Rev. Phys. Chem. 34, 161–204 (2015)

    Article  Google Scholar 

  11. Pan, H., Liu, K., Caracciolo, A., Casavecchia, P.: Crossed beam polyatomic reaction dynamics: recent advances and new insights. Chem. Soc. Rev. 46, 7517–7547 (2017)

    Article  Google Scholar 

  12. Caracciolo, A., et al.: combined experimental and theoretical studies of the O(3P) + 1-butene reaction dynamics: primary products, branching ratios and role of intersystem crossing. J. Phys. Chem. A 123, 9934–9956 (2019)

    Article  Google Scholar 

  13. Blumenberg, B., Hoyermann, K., Sievert, R.: Primary products in the reactions of oxygen atoms with simple and substituted hydrocarbons. Symp. Int. Combust. 16, 841–852 (1977)

    Article  Google Scholar 

  14. Vanuzzo, G., et al.: Isomer-specific chemistry in the propyne and allene reactions with oxygen atoms: CH3CH + CO versus CH2CH2 + CO products. J. Phys. Chem. Lett. 7, 1010–1015 (2016)

    Article  Google Scholar 

  15. Vanuzzo, G., et al.: Reaction dynamics of O(3P) + propyne: I. primary products, branching ratios, and role of intersystem crossing from crossed molecular beam experiments. J. Phys. Chem. A 120, 4603–4618 (2016)

    Article  Google Scholar 

  16. Nguyen, T.L., Vereecken, L., Hou, X.J., Nguyen, M.T., Peeters, J.: Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(XAg): a comprehensive theoretical study. J. Phys. Chem. A 109, 7489–7499 (2005)

    Article  Google Scholar 

  17. Nguyen, T.L., Vereecken, L., Peeters, J.: Quantum chemical and theoretical kinetics study of the O(3P) + C2H2 reaction: a multistate process. J. Phys. Chem. A 110, 6696–6706 (2006)

    Article  Google Scholar 

  18. Nguyen, T.L., Peeters, J., Vereecken, L.: Theoretical reinvestigation of the O(3P) + C6H6 reaction: quantum chemical and statistical rate calculations. J. Phys. Chem. A 111, 3836–3849 (2007)

    Article  Google Scholar 

  19. Balucani, N., Leonori, F., Casavecchia, P., Fu, B., Bowman, J.M.: Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(3P) + ethylene reaction at high collision energy. J. Phys. Chem. A 119, 12498–12511 (2015)

    Article  Google Scholar 

  20. Rajak, K., Maiti, B.: Trajectory surface hopping study of the O(3P) + C2H2 reaction dynamics: effect of collision energy on the extent of intersystem crossing. J. Chem. Phys. 140, 044314 (2014)

    Article  Google Scholar 

  21. Cavallotti, C., et al.: Relevance of the channel leading to formaldehyde + triplet ethylidene in the O(3P) + propene reaction under combustion conditions. J. Phys. Chem. Lett. 5, 4213–4218 (2014)

    Article  Google Scholar 

  22. Li, X., Jasper, A.W., Zádor, J., Miller, J.A., Klippenstein, S.J.: Theoretical kinetics of O + C2H4. Proc. Combust. Inst. 36, 219–227 (2017)

    Article  Google Scholar 

  23. Nguyen, T., Peeters, J., Vereecken, L.: Quantum chemical and statistical rate study of the reaction of O(3P) with allene: O-addition and H-abstraction channels. J. Phys. Chem. A 110, 12166–12176 (2006)

    Article  Google Scholar 

  24. Casavecchia, P., Capozza, G., Segoloni, E., Leonori, F., Balucani, N., Volpi, G.G.: Dynamics of the O(3P) + C2H4 reaction: Identification of five primary product channels (vinoxy, acetyl, methyl, methylene, and ketene) and branching ratios by the crossed molecular beam technique with soft electron ionization. J. Phys. Chem. A 109, 3527–3530 (2005)

    Article  Google Scholar 

  25. Fu, B., et al.: Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: experiment validates theory. In: Proceedings of the National Academy of Sciences (U.S.A.), vol. 109, pp. 9733–9738 (2012)

    Google Scholar 

  26. Leonori, F., et al.: Experimental and theoretical studies on the dynamics of the O(3P) + propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119, 14632–14652 (2015)

    Article  Google Scholar 

  27. Leonori, F., Occhiogrosso, A., Balucani, N., Bucci, A., Petrucci, R., Casavecchia, P.: Crossed molecular beam dynamics studies of the O(3P) + allene reaction: primary products, branching ratios, and dominant role of intersystem crossing. J. Phys. Chem. Lett. 3, 75–80 (2012)

    Article  Google Scholar 

  28. Leonori, F., Balucani, N., Capozza, G., Segoloni, E., Volpi, G.G., Casavecchia, P.: Dynamics of the O(3P) + C2H2 reaction from crossed molecular beam experiments with soft electron ionization detection. Phys. Chem. Chem. Phys. 16, 10008–10022 (2014)

    Article  Google Scholar 

  29. Casavecchia, P., Leonori, F., Balucani, N., Petrucci, R., Capozza, G., Segoloni, E.: Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys. Chem. Chem. Phys. 11, 46–65 (2009)

    Article  Google Scholar 

  30. Vanuzzo, G., et al.: Crossed-Beams and theoretical studies of the O(3P, 1D) + benzene reactions: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 125, 8434–8453 (2021)

    Article  Google Scholar 

  31. Cavallotti, C.; Della Libera, A.; Recio, P.; Caracciolo, A.; Balucani, N.; Casavecchia, P.: Crossed-beam and theoretical studies of multichannel nonadiabatic reactions: branching fractions and role of intersystem crossing for O(3P) + 1,3-butadiene. Faraday Discuss. (2022). In press. https://doi.org/10.1039/D2FD00037G

  32. Caracciolo, A., et al.: Crossed molecular beams and theoretical studies of the O(3P) + 1,2-butadiene reaction: dominant formation of propene + CO and ethylidene + ketene molecular channels. Chin. J. Chem. Phys. 32, 113–122 (2019)

    Article  Google Scholar 

  33. NIST Chemistry WebBook, Gaithersburg, MD: National Institute of Standards and Technology (2002)

    Google Scholar 

  34. Vanuzzo, G., et al.: Work in progress

    Google Scholar 

  35. Chai, J.D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008)

    Article  Google Scholar 

  36. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  Google Scholar 

  37. Jr Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  38. Woon, D.E., Jr Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. III. the atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)

    Article  Google Scholar 

  39. Kendall, R.A., Jr Dunning, T.H., Harrison, J.R.: Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)

    Article  Google Scholar 

  40. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  41. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass- weighted internal coordinates. J. Phys. Chem. 41, 5523–5527 (1990)

    Article  Google Scholar 

  42. Frisch, M. J., et al.: Gaussian 09, Rev. A.02, Gaussian, Inc., Wallingford, CT (2009)

    Google Scholar 

  43. Werner, H.-J., Knowles, P.J., Knizia, G., Manby, F.R., Schütz, M.: Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2, 242–253 (2012). https://doi.org/10.1002/wcms.82

    Article  Google Scholar 

  44. Werner, H.-J., et al.: The Molpro quantum chemistry package. J. Chem. Phys. 152, 144107 (2020). https://doi.org/10.1063/5.0005081

    Article  Google Scholar 

  45. Cavallotti, C., et al.: Theoretical study of the extent of intersystem crossing in the O(3P) + C6H6 reaction with experimental validation. J. Phys. Chem. Lett. 11, 9621–9628 (2020)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the Italian MUR (Ministero dell’Università e della Ricerca) for “PRIN 2017” funds, project “Modeling and Analysis of carbon nanoparticles for innovative applications Generated dIrectly and Collected DUring combuSTion (MAGIC DUST)”, Grant Number 2017PJ5XXX. We acknowledge support also from Italian MUR, University of Perugia within the program “Department of Excellence-2018–2022-Project AMIS”, and “Dipartimento di Ingegneria Civile ed Ambientale” (DICA) of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018–2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmarco Vanuzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vanuzzo, G., Giustini, A., Rosi, M., Casavecchia, P., Balucani, N. (2022). Theoretical Study of the Reaction O(3P) + 1,2-Butadiene. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13382. Springer, Cham. https://doi.org/10.1007/978-3-031-10592-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10592-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10591-3

  • Online ISBN: 978-3-031-10592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics