Skip to main content

Change Detection Analysis Using Sentinel-1 Satellite Data with SNAP and GEE Regarding Oil Spill in Venezuela

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

In Venezuela, according to a report by the National Aeronautics and Space Administration (NASA) dated September 2021, up to 50,000 oil spills at sea have been monitored in the 2010–2016-time frame. In the current two-year period, the situation does not seem to have changed: the state refinery of the Venezuelan oil company Petróleos de Venezuela, S.A. (PDVSA), located near El Palito (Carabobo), is estimated to have been responsible for nearly 100,000 barrels of oil spilled in just one year. The aforementioned spills, with the intensification of extraction, transport and storage operations, have given rise to a greater number of accidents resulting in uncontrolled dispersion of material, endangering local marine-coastal ecosystems. The one that took place in July 2020 stands out, reconstructed a posteriori using satellite images that have highlighted its geo-environmental impact. Remote sensing has played a fundamental role in identifying and monitoring the spread of hydrocarbons; in the present study, the same event was analysed using Sentinel-1 Synthetic Aperture Radar Image (SAR) Change Detection techniques. The use of the desktop software SeNtinel Application Platform (SNAP) of the European Space Agency (ESA) made it possible to quantify the ocean surface affected by the phenomenon under analysis; at the same time, an algorithm was formulated within the cloud platform Google Earth Engine (GEE) which confirmed the same outputs but more quickly and allowed the implementation of an algorithm that exploits the statistical concept of value of Otsu threshold. The results obtained were subsequently compared with other results extrapolated through automatic methodologies developed by ESA, which supported a better accuracy of the procedures used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, F., Sun, W., Li, J., Zhao, Y., Zhang, Y., Chen, G.: An improved Otsu method for oil spill detection from SAR images. Oceanologia 59(3), 311–317 (2017)

    Article  Google Scholar 

  2. Naboureh, A., Ebrahimy, H., Azadbakht, M., Bian, J., Amani, M.: RUESVMs: an ensemble method to handle the class imbalance problem in land cover mapping using Google Earth Engine. Remote Sens. 12(21), 3484 (2020)

    Article  Google Scholar 

  3. Venezuela's coastal villages, fisherman suffer as oil spills rise, Reuters. https://www.reuters.com/business/environment/venezuelas-coastal-villages-fisherman-suffer-oil-spills-rise, Accessed 06 Oct 2021

  4. Sánchez, J.C.: Afectacion de los ecosistemas marino-costeros por los derrames de hidrocarburos marine-coastal ecosystems pollution by hydrocarbon spills. Comisión Editorial (2020)

    Google Scholar 

  5. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  6. Cervelli, E., Pindozzi, S., Capolupo, A., Okello, C., Rigillo, M., Boccia, L.: Ecosystem services and bioremediation of polluted areas. Ecol. Eng. 87, 139–149 (2016)

    Google Scholar 

  7. Palladino, M., Nasta, P., Capolupo, A., Romano, N.: Monitoring and modelling the role of phytoremediation to mitigate non-point source cadmium pollution and groundwater contamination at field scale. Ital. J. Agron 13(s1), 59–68 (2018)

    Google Scholar 

  8. Klein, E.: La refinería El Palito está todo el tiempo derramando hidrocarburos. https://elestimulo.com/eduardo-klein-la-refineria-el-palito-esta-todo-el-tiempo-derramando-hidrocarburos, 21 Aug 2020

  9. Kingston, P.F.: Long-term environmental impact of oil spills. Spill Sci. Technol. Bull. 7(1–2), 53–61 (2002)

    Google Scholar 

  10. Al-Ruzouq, R., et al.: Sensors, features, and machine learning for oil spill detection and monitoring: a review. Remote Sens. 12(20), 3338 (2020)

    Google Scholar 

  11. Solberg, A.H., Brekke, C., Husoy, P.O.: Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans. Geosci. Remote Sens. 45(3), 746–755 (2007)

    Google Scholar 

  12. Capolupo, A., Pindozzi, S., Okello, C., Fiorentino, N., Boccia, L.: Photogrammetry for environmental monitoring: the use of drones and hydrological models for detection of soil contaminated by copper. Sci. Total Environ. 514, 298–306 (2015)

    Article  Google Scholar 

  13. Capolupo, A., Pindozzi, S., Okello, C., Boccia, L.: Indirect field technology for detecting areas object of illegal spills harmful to human health: application of drones, photogrammetry and hydrological models. Geospat. Health 8(3), S699–S707 (2014)

    Article  Google Scholar 

  14. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.: A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013)

    Article  Google Scholar 

  15. Capolupo, A., Nasta, P., Palladino, M., Cervelli, E., Boccia, L., Romano, N.: Assessing the ability of hybrid poplar for in-situ phytoextraction of cadmium by using UAV-photogrammetry and 3D flow simulator. Int. J. Remote Sens. 39(15–16), 5175–5194 (2018)

    Article  Google Scholar 

  16. Brekke, C., Solberg, A.H.S.: Oil spill detection by satellite remote sensing. Remote Sens. Environ. 95(1), 1–13 (2005)

    Article  Google Scholar 

  17. Kotova, L., Espedal, H.: Oil spill detection using spaceborne SAR- A brief review. Inf. Sustainabil., 791–794 (1998)

    Google Scholar 

  18. Tarantino, E.: Monitoring spatial and temporal distribution of Sea Surface Tempera-ture with TIR sensor data. Ital. J. Remote Sens./Rivista Italiana di Telerile-vamento 44(1), 97–107 (2012)

    Google Scholar 

  19. ESA Mission Sentinel-1. https://www.esa.int, Accessed 01 Mar 2022

  20. Akkartal, A., Sunar, F.: The usage of radar images in oil spill detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37(B8), 271–276 (2008)

    Google Scholar 

  21. Espedal, H.: Detection of oil spill and natural film in the marine environment by spaceborne SAR. In: IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293), vol. 3. IEEE (1999)

    Google Scholar 

  22. Villamizar, E.: Impactos de los derrames de petroleo sobre los arrecifes coralinos y sys bienes y sercivios ecosistémicos impacts of the oil spills over the coral reefs and their ecosistémicos impacts of the oil spills over the coral reefs and their ecosystems goods and services. Comision Editorial 45 (2020)

    Google Scholar 

  23. Mullissa, A., et al.: Sentinel-1 sar backscatter analysis ready data preparation in google earth engine. Remote Sens. 13(10), 1954 (2021)

    Article  Google Scholar 

  24. Migliaccio, M., Gambardella, A., Tranfaglia, M.: SAR polarimetry to observe oil spills. IEEE Trans. Geosci. Remote Sens. 45(2), 506–511 (2007)

    Article  Google Scholar 

  25. Torres, R., et al.: GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012)

    Article  Google Scholar 

  26. Gancheva, I., Peneva, E.: Verification of the SNAP ocean-tool for oil spill detection for the Bulgarian Black Sea region. In: AIP Conference Proceedings, vol. 2075, no. 1. AIP Publishing LLC (2019)

    Google Scholar 

  27. Potin, P.: Sentinel-1 mission overview, pp. 04–11 (2011)

    Google Scholar 

  28. Giancaspro, A., Candela, L., Lopint, E., Lore, V.A., Milillo, G.: SAR images co-registration parallel implementation. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 3. IEEE (2002)

    Google Scholar 

  29. Filipponi, F.: Sentinel-1 GRD preprocessing workflow. Multidisc. Dig. Publ. Inst. Proc. 18(1) (2019)

    Google Scholar 

  30. Veci, L., Lu, J., Foumelis, M., Engdahl, M.: ESA’s multi-mission sentinel-1 toolbox. In: EGU General Assembly Conference Abstracts (2017)

    Google Scholar 

  31. Fan, J., Zhang, F., Zhao, D., Wang, J.: Oil spill monitoring based on SAR remote sensing imagery. Aquatic Procedia 3, 112–118 (2015)

    Article  Google Scholar 

  32. Prastyani, R., Basith, A.: Utilisation of sentinel-1 SAR imagery for oil spill mapping: a case study of balikpapan Bay oil spill. J. Geospat. Inf. Sci. Eng. 1(1), 22–26 (2018)

    Google Scholar 

  33. Nasirzadehdizaji, R., Cakir, Z., Sanli, F. B., Abdikan, S., Pepe, A., Calo, F.: Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Comput. Electron. Agric. 185, 106118 (2021)

    Google Scholar 

  34. Nunziata, F., Gambardella, A., Migliaccio, M.: On the degree of polarization for SAR sea oil slick observation. ISPRS J. Photogramm. Remote. Sens. 78, 41–49 (2013)

    Article  Google Scholar 

  35. De Zan, F., López-Dekker, P.: SAR image stacking for the exploitation of long-term coherent targets. IEEE Geosci. Remote Sens. Lett. 8(3), 502–506 (2010)

    Article  Google Scholar 

  36. Li, Z., Bethel, J.: Image coregistration in SAR interferometry. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 37, 433–438 (2008)

    Google Scholar 

  37. Ali, I., Cao, S., Naeimi, V., Paulik, C., Wagner, W.: Methods to remove the border noise from Sentinel-1 synthetic aperture radar data: implications and importance for time-series analysis. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 11(3), 777–786 (2018)

    Google Scholar 

  38. Masoomi, A., Hamzehyan, R., Shirazi, N.C.: Speckle reduction approach for SAR image in satellite communication. Int. J. Mach. Learn. Comput. 2(1), 62 (2012)

    Article  Google Scholar 

  39. Zhu, J., Wen, J., Zhang, Y.: A new algorithm for SAR image despeckling using an enhanced Lee filter and median filter. In: 2013 6th International congress on image and signal processing (CISP), vol. 1. IEEE (2013)

    Google Scholar 

  40. Adrian, J., Sagan, V., Maimaitijiang, M.: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J. Photogramm. Remote. Sens. 175, 215–235 (2021)

    Article  Google Scholar 

  41. Longépé, N., Mouche, A.A., Ferro-Famil, L., Husson, R.: Co-cross-polarization coherence over the sea surface from sentinel-1 SAR data: perspectives for mission calibration and wind field retrieval. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)

    Article  Google Scholar 

  42. Liu, D., Yu, J.: Otsu method and K-means. In: 2009 Ninth International Conference on Hybrid Intelligent Systems, vol. 1. IEEE (2009)

    Google Scholar 

  43. Marghany, M.: RADARSAT automatic algorithms for detecting coastal oil spill pollution. Int. J. Appl. Earth Obs. Geoinf. 3(2), 191–196 (2001)

    Google Scholar 

  44. Brigham, T.J.: Taking advantage of Google’s Web-based applications and services. Med. Ref. Serv. Q. 33(2), 202–210 (2014)

    Article  Google Scholar 

  45. Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B.: Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm. Remote. Sens. 164, 152–170 (2020)

    Article  Google Scholar 

  46. Mutanga, O., Kumar, L.: Google earth engine applications. Remote Sens. 11(5), 591 (2019)

    Article  Google Scholar 

  47. Vollrath, A., Mullissa, A., Reiche, J.: Angular-based radiometric slope correction for Sentinel-1 on google earth engine. Remote Sens. 12(11), 1867 (2020)

    Article  Google Scholar 

  48. Chaturvedi, S.K., Banerjee, S., Lele, S.: An assessment of oil spill detection using Sentinel 1 SAR-C images. J. Ocean Eng. Sci. 5(2), 116–135 (2020)

    Article  Google Scholar 

  49. Xing, H., Hou, D., Wang, S., Yu, M., Meng, F.: O-LCMapping: a google earth engine-based web toolkit for supporting online land cover classification. Earth Sci. Inf. 14(1), 529–541 (2021). https://doi.org/10.1007/s12145-020-00562-6

    Article  Google Scholar 

  50. Yousefi, J.: Image Binarization Using otsu Thresholding Algorithm. University of Guelph, Ontario (2011)

    Google Scholar 

  51. Yang, X., Shen, X., Long, J., Chen, H.: An improved median-based Otsu image thresholding algorithm. Aasri Procedia 3, 468–473 (2012)

    Article  Google Scholar 

  52. Misra, A., Balaji, R.: Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study. J. Indian Soc. Remote Sens. 45(6), 1065–1075 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Caporusso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caporusso, G., Gallo, C., Tarantino, E. (2022). Change Detection Analysis Using Sentinel-1 Satellite Data with SNAP and GEE Regarding Oil Spill in Venezuela. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13379. Springer, Cham. https://doi.org/10.1007/978-3-031-10545-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10545-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10544-9

  • Online ISBN: 978-3-031-10545-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics