Skip to main content

A WebGIS Prototype for Visualizing and Monitoring the Spatio-temporal Changes in Seawater Quality

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2022 Workshops (ICCSA 2022)

Abstract

Anthropogenic pressure on the coastal areas triggers a shoreline deep evolution, impacting the marine-coastal ecosystem. A specific fact-finding tool should be developed to detect the potential damages suffered by such an environment both qualitatively and quantitatively. Web Geographical Information Systems (WebGIS), developed to store, and handle geospatial big data, as well as disseminate information generated by processing raw data, appears as an optimal solution to address those needs. Indeed, they allow integrating own data with those ones provided by external sources into a single web application, easily accessible through an interactive and straightforward interface. This may interest several types of target audiences, such as local/national authorities and scientific communities. Therefore, this research is aimed at introducing a WebGIS prototype, developed to analyze and visualize seawater quality data in the Puglia region (Southern Italy). System features and capability was designed considering potential consumers’ requirements, and, in accordance with Open Geospatial Consortium and European directive INSPIRE, its infrastructure was developed using Free and Open-Source Software for Geographic information systems. Thus, after defining the end-users and capturing their needs, the platform was built using the three-tier configuration. The levels were devoted to presenting, analyzing, and storing the data, respectively. Additionally, a user-friendly interface, allowing two-dimensional data visualization, was also programmed to help the not-skilled consumers in consulting the stored data. The developed WebGIS allows both multi-temporal and multi-scale analysis to evaluate and monitor seawater quality permitting local authorities to plan the adequate remedial actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay, R., Alder, J.: Coastal planning and management. CRC Press, USA (2005)

    Google Scholar 

  2. Boccia, L., Capolupo, A., Rigillo, M., Russo, V.: Terrace abandonment hazards in a mediterranean cultural landscape. J Hazard. Toxic Radioactive Waste 24(1), 04019034 (2020)

    Article  Google Scholar 

  3. Lama, G.F.C., Sadeghifar, T., Azad, M.T., Sihag, P., Kisi, O.: On the indirect estimation of wind wave heights over the Southern Coasts of Caspian sea: a comparative analysis. Water 14, 843 (2022). https://doi.org/10.3390/w14060843

  4. Sadeghifar, T., Lama, G.F.C., Sihag, P., Bayram, A., Kisi, O.: Wave height predictions in complex sea flows through soft computing models: Case study of Persian gulf. Ocean Eng. 245, 110467 (2022). https://doi.org/10.1016/j.oceaneng.2021.110467

  5. Peng, W., Yuan, Z., Wang, J.: Attention-enhanced neural network models for turbulence simulation. Phys. Fluids 34, 025111 (2022). https://doi.org/10.1063/5.0079302

  6. Palladino, M., Nasta, P., Capolupo, A., Romano, N.: Monitoring and modelling the role of phytoremediation to mitigate non-point source cadmium pollution and groundwater contamination at field scale. Ital. J. Agron. 13(s1), 59–68 (2018)

    Google Scholar 

  7. Capolupo, A., Boccia, L.: Innovative method for linking anthropisation process to vulnerability. World Rev. Sci. Technol. Sustain. Develop. 17(1), 4–22 (2021)

    Google Scholar 

  8. Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K.: Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water. 6, 1–27 (2019)

    Google Scholar 

  9. Capolupo, A., Kooistra, L., Boccia, L.: A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos. Int. J. Appl. Earth Obs. Geoinf. 73, 800–810 (2018)

    Google Scholar 

  10. Capolupo, A., et al.: An interactive WebGIS framework for coastal erosion risk management. J. Mar. Sci. Eng. 9(6), 567 (2021)

    Google Scholar 

  11. Lama, G.F.C., Crimaldi, M.: Remote sensing of ecohydrological, ecohydraulic, and ecohydrodynamic phenomena in vegetated waterways: the role of Leaf Area Index (LAI). Biol. Life Sci. Forum 3, 54 (2021). https://doi.org/10.3390/IECAG2021-09728)

  12. Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., Maggio, A.: Drone and sensor technology for sustainable weed management: a review. Chem. Biol. Technol. Agric. 8(1), 1–11 (2021). https://doi.org/10.1186/s40538-021-00217-8

  13. Alesheikh, A.A., Helali, H., Behroz, H.A.: Web GIS: technologies and its applications. In: Symposium on geospatial theory, processing and applications; ISPRS: Ottawa, Canada, (2002)

    Google Scholar 

  14. Kuria, E., Kimani, S., Mindila, A.: A framework for web GIS development: a review. Int. J. Comput. Appl. 178, 0975–8887 (2019)

    Google Scholar 

  15. Soto-Garcia, M., Del-Amor-Saavedra, P., Martin-Gorriz, B., Martínez-Alvarez, V.: The role of information and communication technologies in the modernisation of water user associations’ management. Comput. Electron. Agric. 98, 121–130 (2013)

    Google Scholar 

  16. Caradonna, G., Novelli, A., Tarantino, E., Cefalo, R., Fratino, U.: A WebGIS framework for disseminating processed remotely sensed on land cover transformations. Rep. Geod. Geoinf. 100, 27–38 (2016)

    Google Scholar 

  17. Caradonna, G, Tarantino, E., Novelli, A., Figorito, B., Fratino, U.: Un WebGIS per la divulgazione delle analisi dei processi di desertificazione del territorio della Puglia. In: Proceedings of the Atti Conferenza Nazionale Asita, Lecco, Italy, 29 September–1 October, pp. 217–223 (2015)

    Google Scholar 

  18. Kitsiou, D., Patera, A., Tsegas, G., Nitis, T.: A webGIS application to assess seawater quality: a case study in a coastal area in the Northern Aegean sea. J. Mar. Sci. Eng. 9, 33 (2021)

    Google Scholar 

  19. Wheeler, D.A.: Why Open Source Software/Free Software (OSS/FS). 2007. http://www.dwheeler.com/oss_fs_why.html. Accessed 18 Jan 2020

  20. Huxhold, W.E., Levinsohn, A.G.: Managing geographic information system projects. Cartographica 32, 63 (1995)

    Google Scholar 

  21. Caradonna, G., Figorito, B., Tarantino, E.: Sharing environmental geospatial data through an open source WebGIS. In: International Conference on Computational Science and Its Applications (pp. 556–565). Springer, Cham (2015, June)

    Google Scholar 

  22. Capolupo, A., Saponaro, M., Fratino, U., Tarantino, E.: Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquat. Ecosyst. Health Manag. 23(4), 491–499 (2020)

    Google Scholar 

  23. Geoportale Nazionale. http://www.pcn.minambiente.it/mattm/. Accessed 3 Jan 2020

  24. SIT Puglia. http://www.sit.puglia.it/. Accessed 16 Dec 2019

  25. ARPA Puglia. https://www.arpa.puglia.it/. Accessed 16 Dec 2021

  26. ISPRA. https://www.mareografico.it/?session=0S307671967290K66706988JB&syslng=ing&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0. Accessed 4 Jan 2022

  27. VesselFinder. https://www.vesselfinder.com/it. Accessed 15 Jan 2022

  28. AI SMART project. https://pugliacon.regione.puglia.it/web/sit-puglia-dipartimento/ai-smart#mains. Accessed 25 Feb 2022

  29. Apache Tomcat. http://tomcat.apache.org/. Accessed 10 Mar 2020

  30. Carter, B.: HTML Architecture, a Novel Development System (HANDS). An approach for web development. In: Proceedings of the 2014 Annual Global Online Conference on Information and Computer Technology, Louisville, KY, USA, 3–5 December (2014)

    Google Scholar 

  31. Geoserver. http://geoserver.org/. Accessed 3 Mar 2020

  32. PostgreSQL: The world’s most advanced open source relational database. https://www.postgresql.org/. Accessed 22 Apr 2020

  33. Cesium JS. https://cesium.com. Accessed 4 Mar 2020

  34. Agrawal, S., Dev Gupta, R.: Development and comparison of open source based web gis frameworks on Wamp and Apache Tomcat web servers. In: Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

    Google Scholar 

  35. Suzhou, China, 14–16 May 2014; Volume XL-4

    Google Scholar 

  36. Fustes, D., Cantorna, D., Dafonte, C., Arcay, B., Iglesias, A., Manteiga, M.: A cloud-integrated web platform for marine monitoring using GIS and remote sensing. Application to oil spill detection through SAR images. Future Gener. Comput. Syst. 34, 155–160 (2013)

    Google Scholar 

  37. Huang, Z., Xu, Z.: A method of using geoServer to publish economy geographical information. In: Proceedings of the 2011 International Conference on Control, Automation and Systems Engineering (CASE), Singapore, 30–31 July 2011; IEEE: Piscataway, NJ, USA, pp. 1–4 (2011)

    Google Scholar 

  38. Brovelli, M.A., Boccardo, P., Bordogna, G., Pepe, A., Crespi, M., Munafò, M., Pirotti, F.: Urban geo Big Data. In: Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bucharest, Romania, 26–30 August; Volume XLII-4/W14 (2019)

    Google Scholar 

  39. Getbootstrap. https://getbootstrap.com/. Accessed 21 Oct 2019

  40. W3.CSS. https://www.w3schools.com/w3css/. Accessed 20 Oct 2019

  41. Kommana, K. Implementation of a geoserver application for GIS data distribution and manipulation. Master’s Thesis, Physical Geography and Quaternary Geology, Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden (2013)

    Google Scholar 

  42. Caradonna, G., Frigorito, B., Novelli, A., Tarantino, E., Fratino, U.: Geomatic techniques for disseminating processed remotely sensed open data in an interactive WebGIS. Plurimondi (2017). http://193.204.49.18/index.php/Plurimondi/article/view/47. Accessed 19 May 2021

  43. Haynes, D., Ray, S., Manson, S.M., Soni, A.: High performance analysis of big spatial data. In: Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November (2015)

    Google Scholar 

  44. Ružicka, J.: Comparing speed of Web Map Service with GeoServer on ESRI Shapefile and PostGIS. Geoinformatics 15, 3–9 (2016)

    Google Scholar 

  45. Geoext3. http://geoext.github.io/geoext3/. Accessed 16 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capolupo, A. et al. (2022). A WebGIS Prototype for Visualizing and Monitoring the Spatio-temporal Changes in Seawater Quality. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13379. Springer, Cham. https://doi.org/10.1007/978-3-031-10545-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10545-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10544-9

  • Online ISBN: 978-3-031-10545-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics