Skip to main content

Remarks on Lévy Process Simulation

  • Chapter
  • First Online:
Advances in Modeling and Simulation
  • 456 Accesses

Abstract

Algorithms for simulation of a Lévy process X(t) are discussed, with particular emphasis on two algorithms approximating jumps that are in some sense small. One is classical, defining small jumps as those of absolute value \({<}\varepsilon \). The other one appears to be new and relies on an completely monotone structure of the Lévy density n(x). One then truncates the representing measure of n(x) to [0, A], meaning that jumps of mean \({<}1/A\) are left out. In both algorithms, the large jump part is simulated as compound Poisson and the small jumps are approximated. The standard choice of such an approximation is normal with the same mean and variance, but we also consider gamma approximations in two variants, and show that in some cases these perform substantially better. Other algorithms are briefly surveyed and we sketch a new one for simulation of a tempered stable (CGMY) process with infinite variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    Google Scholar 

  2. Asmussen, S.: Conditional Monte Carlo for sums, with applications to insurance and finance. Ann Actuarial Sci 12, 455–478 (2018)

    Article  Google Scholar 

  3. Asmussen, S.: On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance. Finance and Stochastics 26, 383–416 (2022)

    Google Scholar 

  4. Asmussen, S., Glynn, P.: Stochastic Simulation, Algorithms and Analysis. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  5. Asmussen, S., Ivanovs, J.: Discretization error for a two-sided reflected Lévy process. Queueing Syst. 89, 199–212 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asmussen, S., Rosiński, J.: Approximations for small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38, 482–493 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avramidis, A., L’Ecuyer, P., Tremblay, P.A.: Efficient simulation of Gamma and variance Gamma processes. In: Proceedings of the 2003 Winter Simulation Conference, pp. 319–326 (2003)

    Google Scholar 

  8. Ballotta, L., Kyriakou, I.: Monte Carlo simulation of the CGMY process and option pricing. J. Futur. Mark. 4, 1095–1121 (2014)

    Article  Google Scholar 

  9. Barndorff-Nielsen, O.: Processes of normal inverse Gaussian type. Financ. Stochast. 4, 1095–1121 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Bertoin, J.: Lévy Processes. Cambridge University Press (1996)

    Google Scholar 

  11. Bondesson, L.: On simulation from infinitely divisible distributions. Adv. Appl. Probab. 14, 855–869 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  13. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Financ. 2, 61–73 (1998)

    Article  Google Scholar 

  14. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC (2004)

    Google Scholar 

  15. Debicki, K., Mandjes, M.: Queues and Lévy Fluctuation Theory. Springer (2018)

    Google Scholar 

  16. Dia, E.: Error bounds for small jumps of Lévy processes. Adv. Appl. Probab. 45, 86–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2 edn. Wiley (1971)

    Google Scholar 

  18. Grigelionis, B.: Generalized z-distributions and related stochastic processes. Lietuvos Matematikos Rinkinys 41, 239–251 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Hackmann, D., Kuznetsov, A.: Approximating Lévy processes with completely monotone jumps. Ann. Appl. Probab. 26, 328–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivanovs, J.: Zooming in on a Lévy process at its supremum. Ann. Appl. Probab. 28, 912–940 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeannin, M., Pistorius, M.: A transform approach to compute prices and Greeks of barrier options driven by a class of Lévy processes. Quant. Financ. 10, 629–644 (2010)

    Article  MATH  Google Scholar 

  22. Kallenberg, O.: Foundations of Modern Probability, 2nd ed. edn. Springer (2003)

    Google Scholar 

  23. Karlsson, P.: Finite element based Monte Carlo simulation of options on Lévy driven assets. Int. J. Financ. Eng. 5, 1850013 (2018)

    Article  MathSciNet  Google Scholar 

  24. Küchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Their Appl. 123, 4256–4293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. L’Ecuyer, P.: https://github.com/umontreal-simul/ssj (2015). Software package, Université de Montreal

    Google Scholar 

  26. L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte Carlo and quasi-Monte Carlo density estimation via conditioning. Inf. J. Comput. (2022). https://doi.org/10.1287/ijoc.2021.1135

    Article  MathSciNet  MATH  Google Scholar 

  27. Madan, D., Yor, M.: “CGMY and Meixner subordinators are absolutely continuous with respect to one sided stable subordinators”. HAL Archives-Ouvert.fr hal-00016662v2 (2006)

    Google Scholar 

  28. Mozzola, M., Muliere, P.: Reviewing alternative characterizations of Meixner process. Probab. Surv. 8, 127–154 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Nolan, J.: Univariate Stable Distributions Models for Heavy Tailed Data. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  30. Poirot, J., Tankov, P.: Monte Carlo option pricing for tempered stable (CGMY) processes. Asia-Pac. Financ. Mark. 13, 327–344 (2006)

    Article  MATH  Google Scholar 

  31. Rosiński, J.: Series representations of Lévy processes from the perspective of point processes. In: Barndorff-Nielsen, O., Mikosch, T., Resnick, S. (eds.) Lévy Processes — Theory and Applications, pp. 401–415. Birkhäuser (2001)

    Google Scholar 

  32. Rydberg, T.: The normal inverse Gaussian Lévy process: simulation and approximations. Stoch. Model. 13, 887–910 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999)

    Google Scholar 

  34. Schilling, R., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, 2nd edn. de Gruyter (2012)

    Google Scholar 

  35. Schoutens, W.: Lévy Processes in Finance Pricing Financial Derivatives. Wiley (2003)

    Book  Google Scholar 

  36. Seneta, E.: A Tauberian theorem of E. Landau and W. Feller. Annals of Probability 6, 1057–1058 (1973)

    Google Scholar 

  37. Signahl, M.: On error rates to normal approximations and simulation schemes for Lévy processes. Stoch. Model. 19, 287–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the reviewers for useful comments and corrections, and to Alexey Kuznetsov for useful hints related to Example 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Asmussen .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 An A-R Scheme for Generation from v(t)/t in the TS Case

We need to generate a r.v. Z with density proportional to u(t)/t, \(\beta<t<A\) where \(u(t)=(t-\beta )^\alpha \). To this end, write \(Z=\beta +Z_0\) where \(Z_0\) has density proportional to \(u(t+\beta )/(t+\beta )\) \(=t^\alpha /(t+\beta )\) , \(0<t<B\) where \(B=A-\beta \). Here \(Y=1/Z_0\) has density proportional to \(1/y^{1+\alpha }/(1+\beta y)\), \(1<1/B<y<\infty \), and can therefore be generated by A-R with either a Pareto\((\alpha )\) proposal and acceptance probability proportional to \( 1/(1+\beta y)\) (high for small y) or a Pareto\((1+\alpha )\) proposal and acceptance probability proportional to \( y/(1+\beta y)\) (high for large y). As in Sect. 4, we use a mixture, corresponding to breaking the compound Poisson part in 2) above into two. So, let

$$\begin{aligned}\begin{gathered} \lambda _1\ =\ \int _{1/B}^{y_0}\frac{1}{y^{1+\alpha }(1+\beta y)}\,{\textrm{d}} y\,,\ \ \mu _1\ =\ \int _{1/B}^{y_0}\frac{1}{y^{1+\alpha }}\,{\textrm{d}} y\ =\ \frac{1}{\alpha }[B^\alpha -1/y_0^\alpha ]\,,\\ \lambda _2\ =\ \int _{y_0}^\infty \frac{1}{y^{1+\alpha }(1+\beta y)}\,{\textrm{d}} y\,,\ \ \mu _2\ =\ \int _{y_0}^\infty \frac{1}{y^{2+\alpha }}\,{\textrm{d}} y\ =\ \frac{1}{(1+\alpha )y_0^{1+\alpha }}\,,\\ C_1\, =\,\frac{\mu _1}{\lambda _1(1+\beta /B)}\,,\quad C_2\, =\,\frac{\mu _2}{\beta \lambda _2} \end{gathered}\end{aligned}$$

The target densities are then

$$f_1(y)=\frac{1}{\lambda _1y^{1+\alpha }(1+\beta y)},\ 1/B<y<y_0,\text {\ \ and\ \ } f_2(y)=\frac{1}{\lambda _2y^{1+\alpha }(1+\beta y)},\ y_0<y<\infty ,$$

and chosen with probabilities \(\lambda _1/(\lambda _1+\lambda _2)\), resp. \(\lambda _2/(\lambda _1+\lambda _2)\), and the proposals are

$$g_1(y)=\frac{1}{\mu _1y^{1+\alpha }},\ 1/B<y<y_0,\text {\ \ and\ \ } g_2(y)=\frac{1}{\mu _2y^{2+\alpha }},\ y_0<y<\infty ,$$

Then \(f_1(y)\le C_1(y_0)g_1(y)\) and \(f_2(y)\le C_2(y_0)g_2(y)\), and we may use A-R with acceptance probabilities

$$\frac{f_1(y)}{C_1(y_0)g_1(y)}=\frac{1}{1+\beta y},\quad \frac{f_2(y)}{C_2(y_0)g_2(y)}=\frac{y}{1+\beta y}$$

for r.v. generation from \(f_1\), resp. \(f_2\). This gives expected numbers \(C_1(y_0)\), \(C_2(y_0)\) of samplings from \(g_1(y)\), resp. \(g_2(y)\), and as measure \(E(y_0)\) of the computational effort, we shall use the total number of these samplings, i.e.

$$\begin{aligned} E(y_0)\ =\ \lambda _1C_1+\lambda _2C_2\ =\ \frac{\mu _1}{1+\beta /B}+\frac{\mu _2}{\beta }\ =\ \frac{\beta \mu _1+(1+\beta /B)\mu _2}{\beta (1+\beta /B)} \end{aligned}$$
(18)

Proposition 4

The function \(E(y_0)\), \(1/B<y_0<\infty \), is minimized for \(y_0=y_0^*=1/\beta +1/B\).

Proof

In (20), \(\beta \) and B as well as term \(B^\alpha /\alpha \) in \(\mu _1\) do not depend on \(y_0\), so we are left with the minimization of \(-\beta /\alpha /y_0^\alpha +(1+\beta /B)/(1+\alpha )/y_0^{1+\alpha }\). The derivative is \(1/y_0^{1+\alpha }/(1+\beta /B)-1/y_0^{2+\alpha }\) which changes sign from negative to positive at \(y_0^*\). From this the result follows. \(\square \)

1.2 An A-R Scheme for Spectrally Positive Infinite Variation TS Processes

Let \(f_0\) be the density of a strictly \(\alpha \)-stable distribution \(S_\alpha (\sigma ,1,0)\) distribution with \(\sigma =\bigl (-\delta \Gamma (-\alpha )\cos (\pi \alpha /2)\bigr )^{1/\alpha }\). The goal is to generate a r.v. X from the density \(f(x)=\) \(\exp \{-\beta x-\psi \}f_0(x)\) in the case \(\alpha >1\) where f and \(f_0\) have support on the whole of \({\mathbb {R}}\); here \(\psi =\delta \Gamma (-\alpha )\beta ^\alpha \). We use that \(f_0(x)\) has the asymptotics [29, p. 100]

$$\begin{aligned} f_0(x)\ \sim \ \frac{c_1}{|x|^\ell }\exp \bigl \{-c_2|x|^\eta \bigr \}\ \ \text {as }x\rightarrow -\infty \end{aligned}$$
(19)

for suitable (explicit) constants) \(c_1,c_2\) and \(\ell =\alpha /(2\alpha -2)\), \(\eta =\alpha /(\alpha -1)\).

For initialization of the algorithm:

(1) Select \(-A<0\) and compute \(p=\int _{-A}^\infty f(x)\,{\textrm{d}} x\)

(2) Select \(c_3<c_2\) and find \(c_4<\infty \) such that

$$\begin{aligned} h(x)\ =\ \frac{{\textrm{e}}^{\beta |x|}f_0(x)}{|x|^{\eta -1}\exp \bigl \{-c_3|x|^\eta \bigr \}}\ \le \ c_4\text {\ \ \ for all }x<-A. \end{aligned}$$

The algorithm is then as follows:

(3) Generate I as Bernoulli(p).

(4) If \(I=1\), generate \(X\in (-A,\infty )\) having density f(x)/p, \(-A<x<\infty \), by A-R with proposal \(Z_0\) having a strictly \(\alpha \)-stable distribution \(S_\alpha (\sigma ,1,0)\) conditioned to \((-A,\infty )\) and acceptance probability \({\textrm{e}}^{-b(z+A)}\) when \(Z_0=z\)

(5) If \(I=0\), generate \(X\in (-\infty ,-A)\) with density \(\widetilde{f}(x)=\) \({\textrm{e}}^{b|x|-\psi }f_0(x)/(1-p)\), \(=\infty<x<-A\), by an A-R scheme defined as follows. As proposal, take a r.v. \(Z_1\) distributed as \(-Z_2\) given \(Z_2>A\) where \(Z_2>0\) is Weibull with \({\mathbb {P}}(Z_2>z)=\) \({\textrm{e}}^{-c_3z^\eta }\). If \(Z_1=x\), accept w.p. \(c_4h(x)\).

(8) return X.

Explanation: Step (2) is possibly because (21), \(c_2>c_3\) and \(\eta >1\) imply \(h(x)\rightarrow 0\) as \(x\rightarrow -\infty \). In (5), the proposal density is \(g(x)={\mathbb {P}}\bigl (X_2\in {\textrm{d}} |x|\,\big |\,Z_2>A\bigr )=c_3\eta |x|^{\eta -1}{\textrm{e}}^{-c_3z^\eta }/{\textrm{e}}^{-c_3A^\eta }\). Thus the ratio of the target density to the proposal density is

$$\begin{aligned} \frac{\widetilde{f}(x)}{g(x)}\ =\ c_5h(x)\quad \text {where}\quad c_5=\frac{\exp \{-\psi -c_3A^\eta \}}{c_3\eta (1-p)} \end{aligned}$$

Hence \(\widetilde{f}(x)/g(x)\le c_0h(x)\) where \(c_0=c_4c_5\), and acceptance w.p. \(\widetilde{f}(x)/c_0/g(x)=c_4h(x)\) will produce the correct result. The conditioned sampling of proposals in (6) and (7) is straightforward by sampled by sampling a \(S_\alpha (\sigma ,1,0)\), resp. Weibull, r.v. until the conditioning requirement is met. Available software, say Matlab or Nolan’s stable package (see the Preface to [29]) accounts for computing \(f_0(x)\) and generating the \(S_\alpha (\sigma ,1,0)\) r.v.’s. The Weibulls can be generated by inversion.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asmussen, S. (2022). Remarks on Lévy Process Simulation. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds) Advances in Modeling and Simulation. Springer, Cham. https://doi.org/10.1007/978-3-031-10193-9_2

Download citation

Publish with us

Policies and ethics