Skip to main content

Analytical Solution for the Fixed-Path Coordination of Two Mobile Robots

  • Conference paper
  • First Online:
CONTROLO 2022 (CONTROLO 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 930))

Included in the following conference series:

  • 769 Accesses

Abstract

The paper studies the coordination task for two mobile robots moving along linear paths to obtain minimal motion time without collisions. The problem is solved using maximum velocity based parameterization and coordination diagram approach. The properties of the parameterization and analytical formula of the collision zone are used to obtain the template of the optimal coordination and formulas to calculate points of switch between motion modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cichella, V., et al.: Safe coordinated maneuvering of teams of multirotor unmanned aerial vehicles: a cooperative control framework for multivehicle, time-critical missions. IEEE Control Syst. Mag. 36, 59–82 (2016). https://doi.org/10.1109/MCS.2016.2558443

    Article  MathSciNet  MATH  Google Scholar 

  2. Cui, R., Gao, B., Guo, J.: Pareto-optimal coordination of multiple robots with safety guarantees. Auton. Robots 32, 189–205 (2012). https://doi.org/10.1007/s10514-011-9265-9

    Article  Google Scholar 

  3. Draganjac, I., Petrović, T., Miklić, D., Kovačić, Z., Oršulić, J.: Highly-scalable traffic management of autonomous industrial transportation systems. Robot. Comput. Integr. Manuf. 63 101, 915 (2020)

    Google Scholar 

  4. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent goals. IEEE Trans. Robot. Autom. 14, 912–925 (1998). https://doi.org/10.1109/70.736775

    Article  Google Scholar 

  5. O’Donnell, P.A., Lozano-Perez, T.: Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings of the International Conference on Robotics and Automation, vol. 1, pp. 484–489. IEEE (1989). https://doi.org/10.1109/ROBOT.1989.100033

  6. Parker, L.E.: Multiple mobile robot teams, path planning and motion coordination. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5783–5800. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_344

    Chapter  Google Scholar 

  7. Roszkowska, E., Dulewicz, P., Janiec, L.: Hierarchical hybrid control for multiple mobile robot systems. IFAC-PapersOnLine 52, 452–457 (2019). https://doi.org/10.1016/j.ifacol.2019.08.093

    Article  Google Scholar 

  8. Roszkowska, E., Reveliotis, S.: A distributed protocol for motion coordination in free-range vehicular systems. Automatica 49, 1639–1653 (2013). https://doi.org/10.1016/j.automatica.2013.02.036

    Article  MathSciNet  MATH  Google Scholar 

  9. Secchi, C., Olmi, R., Fantuzzi, C., Casarini, M.: TRAFCON - traffic control of AGVs in automatic warehouses. In: Röhrbein, F., Veiga, G., Natale, C. (eds.) Gearing up and accelerating cross-fertilization between academic and industrial robotics research in Europe, pp. 85–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02934-4_5

  10. Simeon, T., Leroy, S., Laumond, J.P.: Path coordination for multiple mobile robots: a resolution-complete algorithm. IEEE Trans. Robot. Autom. 18, 42–49 (2002). https://doi.org/10.1109/70.988973

    Article  Google Scholar 

  11. Sucapuca-Diaz, A.J., Cornejo-Lupa, M.A., Tejada-Bejazo, M., Barrios-Aranibar, D.: Local coordination diagrams for collision avoidance in multi-robot path planning. In: 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), pp. 335–340. IEEE (2019). https://doi.org/10.1109/LARS-SBR-.2019.00065

  12. Verma, J.K., Ranga, V.: Multi-robot coordination analysis, taxonomy, challenges and future scope. J. Intell. Robot. Syst. 102, 1–36 (2021). https://doi.org/10.1007/S10846-021-01378-2

    Article  Google Scholar 

  13. Zhou, Y., Hu, H., Liu, Y., Lin, S.W., Ding, Z.: A distributed approach to robust control of multi-robot systems. Automatica 98, 1–13 (2018). https://doi.org/10.1016/j.automatica.2018.08.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Centre, Poland, under the project number 2016/23/B/ST7/01441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Jakubiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakubiak, J. (2022). Analytical Solution for the Fixed-Path Coordination of Two Mobile Robots. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds) CONTROLO 2022. CONTROLO 2022. Lecture Notes in Electrical Engineering, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-031-10047-5_9

Download citation

Publish with us

Policies and ethics