Skip to main content

Abstract

The paper presents the data on the radionuclide disposition speciation and estimates their migration dynamics using the East-Urals Radioactive Trace (EURT) and groundwater disposal in the sedimentary formations of the Siberian Chemical Combine (SCK) and the Laptev Sea. The influence of microbiological transformation and bioaccumulation on the physicochemical species of actinides has been studied for samples of SHK. In the EURT soils, plutonium is mainly bound (up to 80%) with humic substances and organomineral part; americium - with fractions of mobile fulvic and low-molecular weight acids; neptunium content was below the detection limit, so the study was performed in model experiments with the addition of 237Np. The content of low molecular weight nonspecific compounds in soils increases in the series Np > Am > Corg > Pu for both chernozem and sod podzols soils. Compared to Pu, the higher content of Np and Am in the composition of low molecular weight nonspecific compounds causes their greater migration mobility in the environment. On the basis of leaching data in the exchangeable and mobile fractions a rather high amount of actinides was found, with their total content being lower than in the residue. Relative actinide content in mobile fractions decreases with decreasing colloidal particle size and increasing groundwater horizon depth. For soils and bottom sediments, the connection with colloidal matter decreases in the series: Pu  ≫ U ≫ Np. High sorption efficiency of biogenic mineral formations is shown. Maximum values of 238−240Pu in bottom sediments of the Laptev Sea, sampled from the upper horizons (0–2 cm), are confined to the mouth of the Khatanga River and Vilkitsky Strait. Isotope ratio 238Pu/239,240Pu corresponds to their ratio in products of global deposition. According to Tessier method, more than 30% of 239Pu is found in organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlotskaya, F.I., Tyuryukanova, E.B., Baranov, V.I.: Global Distribution of Radioactive Strontium over the Earth’s Surface. Nauka, Moscow (1970)

    Google Scholar 

  2. Pavlotskaya, F.I.: Migration of Radioactive Products of Global Deposition in Soils. Atomizdat, Moscow (1974)

    Google Scholar 

  3. Pavlotskaya, F.I.: Forms of residence and migration of radioactive products of global deposition in soils. D. thesis for the degree of Doctor of Chemistry, Geochemistry Institute, USSR Academy of Sciences, Moscow (1981).

    Google Scholar 

  4. Pavlotskaya, F.I.: Modern Problems of Radiogeochemistry and Cosmochemistry. Nauka, Moscow (1992)

    Google Scholar 

  5. Myasoedov, B.F., Novikov, A.P., Pavlotskaya, F.I.: Problems of analysis of natural objects in determining the content and forms of occurrence. J. Anal. Chem. 51(1), 124–130 (1996)

    Google Scholar 

  6. Novikov, A.P., Mikheeva, M.N., Ivanova, S.A., Myasoedov, B.F.: Avt.evid. no. 5146273/27, (1992).

    Google Scholar 

  7. Novikov, A.P., Fabelinsky, Y.I., Lavrinovich, E.A., Goryachenkova, T.A., Grechnikov, A.A.: Speciation and determination of actinides in the environment. Geochem. Int. 54(13), 1196–1209 (2016)

    Article  Google Scholar 

  8. Orlov, D.S.: Soil Chemistry. Moscow State University Press, Moscow (1992)

    Google Scholar 

  9. Orlov, D.S.: Humic acids of soils and general theory of humification. Moscow State University Press, Moscow (1990)

    Google Scholar 

  10. Novikov, A.P., Myasoedov, B.F.: Radiochemical procedures for speciation of actinides in the Environment. Environment Protection against Radioactive pollution 147–154 (2003).

    Google Scholar 

  11. Novikov, A.P.: Migration of Radioniclides in the Environment. Geochem. Int. 48(13), 1285–1398 (2010)

    Article  Google Scholar 

  12. Saito, A., Choppin, G.R.: Separation of actinides in different oxidation states from neutral solutions by solvent extraction. Anal. Chem. 55, 2454–2560 (1983)

    Article  Google Scholar 

  13. Novikov, A.P., Shkinev, V.M., Spivakov, B.Ya., Myasoedov, B.F., Gekkeler, K.E., Bayer, E.: Separation and Preconcentration of Actinides by a water-soluble Oxine Polymer using membrane filtration. Radiochimica Acta 4, 481 (1988).

    Google Scholar 

  14. Novikov, A.P., Safonov, A.V., Babichc, T.L., Boldyrev, K.A., Kryuchkov, D.V., Lavrinovich, E.A., Kuzovkina, E.V., Emel’yanov, A.M., Goryachenkova, T.A.: Biotransformation of Neptunium in Model Groundwaters. Geochem. Int. 65(2), 145–152 (2020)

    Google Scholar 

  15. Vlasova, I.E., Kalmykov, S.N., Sapozhnikov, Y.A., Simakin, S.G., Anokhin, A.Y., Aliev, R.A., Tsarev, D.A.: Radiography and local microanalysis for detection and study of actinide-containing microparticles. Radiochemistry 48(6), 551–556 (2006)

    Article  Google Scholar 

  16. Novikov, A.P., Vlasova, I.E., Safonov, A.V., Ermolaev, V.M., Zakharova, E.V., Kalmykov, S.N.: Speciation of actinides in groundwater samples collected near deep nuclear waste repositories. J. Environ. Radioact. 192, 334–341 (2018)

    Article  Google Scholar 

  17. Teterin, Y.A., Kalmykov, S.N., Novikov, A.P., Sapozhnikov, Y.A., Vukchevich, L.J., Teterin, A.Y., Maslakov, K.I., Utkin, I.O., Khasanova, A.B., Shcherbina, N.S.: Study of interaction of neptunoyl with goethite (α-FeOOH) in water medium by RPS method. Radiochemistry 46(6), 503–509 (2004)

    Article  Google Scholar 

  18. Fuggle, J.C., Burr, A.F., Lang, W., Watson, L.M., Fabian, D.Y.: X-ray photoelectron studies of thorium and uranium. J. Phys. F: Metal. Phys. 4(2), 335 (1974)

    Article  Google Scholar 

  19. Zubavicius, J.V., Slovkhotov, Y.L.: X-ray synchrotron radiation in physico-chemical studies. Advances in Chemistry 70, 429–463 (2001)

    Google Scholar 

  20. Aksenov, V.A., Tyutyunnikov, S.I., Kuzmin, A.Y., Puras, Y.: EXAFS—spectroscopy on synchrotron radiation beams. Physics of elementary particles and atomic nuclei 32(6), 1300–1350 (2001)

    Google Scholar 

  21. Denecke, M.A.: Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev. 250, 730–754 (2006)

    Article  Google Scholar 

  22. Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., Myasoedov, B.F.: Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association. Russia. Science 314, 638–641 (2006)

    Google Scholar 

  23. Proceedings of the OECD-NEA Workshop on Speciation Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources. Grenoble, France (1998).

    Google Scholar 

  24. Proceedings of the Second OECD-NEA Workshop on Speciation Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources. Grenoble, France (2000).

    Google Scholar 

  25. Proceedings of the Third Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources. Berkeley, CA, USA (2004).

    Google Scholar 

  26. Proceedings of the Fourth Workshop on Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources. Karlsruhe, Germany (2006).

    Google Scholar 

  27. Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L.: Migration of plutonium in ground water at the Nevada Test Site. Nature 397, 56–59 (1999)

    Article  Google Scholar 

  28. Colella, M., Lumpkin, G.R., Zhang, Z., Buck, E.C., Smith, K.L.: Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Phys Chem Minerals 32, 52–64 (2005)

    Article  Google Scholar 

  29. Radiation Situation on the Territory of Russia and Neighboring Countries in 2019. Yearbook. Edited by K.P. Makhonko. Gidrometeoizdat, Saint Petersburg (2020).

    Google Scholar 

  30. Myasoedov, B.F., Drozko, E.G.: Up-to-date radioecological situation around the `Mayak’ nuclear facility. J. of Alloys and Compounds 271(273), 216–220 (1998)

    Article  Google Scholar 

  31. Pavlotskaya, F.I., Goryachenkova, T.A., Emelyanov, V.V., Fedorova, Z.M., Myasoedov, B.F.: Behavior of 239 Pu and 240 Pu soil traces after accident in southern urals in 1957. At. Energ. 73(1), 32–36 (1992)

    Google Scholar 

  32. Rybalchenko, A.I., Pimenov, M.K., Kostin, P.P., et al.: Deep Disposal of Liquid Radioactive Waste. Izdat, Moscow (1994)

    Google Scholar 

  33. Zubkov, A.A., Makarova, O.V., Danilov, V.V., et al.: Technogenic geochemical processes in sandy reservoir beds in the disposal of liquid radioactive wastes. Geoecology 2, 133–144 (2002)

    Google Scholar 

  34. Forsyth, W.: Studies on the more soluble complexes of soil organic matter: 1. A method of fractionation. Biochemical Journal 41(2), 176 (1947)

    Google Scholar 

  35. Avogadro, A., DeMarsily, G.. In: The role of colloids in nuclear waste disposal. Env.Sci.Techn. 23(5), 496–502 (1989).

    Google Scholar 

  36. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf., A 107, 1–56 (1996)

    Article  Google Scholar 

  37. McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sei. Technol. 23, 496–502 (1989)

    Google Scholar 

  38. Smith, P.A., Degueldre, C.: Colloid-facilitated transport of radionuclides through fractured media. J. of Contaminant Hydrology 13, 143–166 (1993)

    Article  Google Scholar 

  39. Kurosawa, S., Ueta, S.: Effect of colloids on radionuclide migration for performance assessment of HLW disposal in Japan. Pure Appl. Chem. 73(12), 2027–2037 (2001)

    Article  Google Scholar 

  40. Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844–851 (1979)

    Article  Google Scholar 

  41. Costerton, J.W., Cheng, K.-J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M., Marrie, T.J.: Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41, 435–464 (1987)

    Article  Google Scholar 

  42. Dworkin, M.: Microbial Cell-Cell Interactions. American Society for Microbiology, Washington (1991)

    Google Scholar 

  43. Amann, R.I., Stromley, J., Devereux, R., Key, R., Stahl, D.A.: Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58, 614–623 (1992)

    Article  Google Scholar 

  44. Bryers, J.D.: Modelling biofilm accumulation. in Bazin, M.J., and Prosser, J.I.: Physiological Models in Microbiology. CRC Press, Boca Raton (1988).

    Google Scholar 

  45. Parfenova, V.V., Malnik, V.V., Boyko, S.M., Sheveleva, N.G., Logacheva, N.F., Evstigneeva, T.D., Suturin, A.N., Timoshkin, O.A.: Hydrobiota communities developing at the phase interface: water - rocks in Lake Baikal. Ecology 3, 211–216 (2008)

    Google Scholar 

  46. Grouzdev, D.S., Safonov, A.V., Babich, T.L., Tourova, T.P., Krutkina, M.S., Nazina, T.N.: Draft genome sequence of a dissimilatory U(VI)-reducing bacterium, Shewanella xiamenensis strain DCB2-1, isolated from nitrate- and radionuclide-contaminated groundwater in Russia. Genome Announc 6(25), e00555-e618 (2018)

    Google Scholar 

  47. Grouzdev, D.S., Babich, T.L., Tourova, T.P., Sokolova, D.S., Abdullin, R.R., Poltaraus, A.B., Schevchenko, M.A., Toshchakov, S.V., Nazina, T.N.: Draft genome sequence of Roseomonas aestuarii strain JR1/69-1-13 isolated from nitrate- and radionuclide-contaminated groundwater in Russia. Genome Announc 6(25), e00583-e618 (2018)

    Google Scholar 

  48. Salbu, B., Nikitin, A., Strand, P., Christensen, G., Chumichev, V., Lind, B., Fjelldal, H., Bergan, T., Rudjord, A., Sickel, M., Valetova, N., Foyn, L.: Radioactive contamination from dumped nuclear waste in the Kara Sea-results from joint Russian-Norwegian expeditions in 1992–1994. The Science of the Total Environment 202, 185–198 (1997)

    Article  Google Scholar 

  49. Goryachenkova, T.A., Emelyanov, V.V., Kazinskaya, I.E., Barsukova, K.V., Stepanets, O.V., Myasoedov, B.F.: Plutonium content in water and bottom sediments of the Kara Sea. Radiochemistry 42(3), 264–268 (2000)

    Google Scholar 

  50. Goryachenkova, T.A., Borisov, A.P., Solovyova, G.Y., Lavrinovich, E.A., Kazinskaya, I.E., Ligaev, A.N., Travkina, A.V., Novikov, A.P.: Content of man-made radionuclides in water, bottom sediments and benthos of Kara Sea and shallow bays of the archipelago New Land. Geochemistry 64(12), 1261–1268 (2019)

    Google Scholar 

  51. Travkina, A.V., Goryachenkova, T.A., Borisov, A.P., Solovieva, G.Y., Ligaev, A.N., Novikov, A.P.: Monitoring of environmental contamination of Kara Sea and shallow bays of Novaya Zemlya. J. Radioanal. Nucl. Chem. 311(3), 1673–1680 (2017)

    Article  Google Scholar 

  52. Druzhkova, E.I., Makarevich, P.R.: Study of phytoplankton of the Laptev Sea: history and modernity. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences 1(14), (2013).

    Google Scholar 

  53. Vetrov, A.A., Romankevich, E.A., Belyaev, N.A.: Chlorophyll, primary production, fluxes and balance of organic carbon in the Laptev Sea. Geochemistry 10, 1122–1130 (2008)

    Google Scholar 

  54. Astakhov, A.S., Semiletov, I.P., Sattarova, V V , Shi Xuefa, Hu Limin, Aksentov, K.I., Vasilenko, Y.P., Ivanov, M.V.: Rare earth elements in bottom sediments of Russian East Arctic seas as indicators of terrigenous drift. Reports of the Academy of Sciences 482(4), 451–455 (2018).

    Google Scholar 

  55. Kuptsov, V.M., Lisitsyn, A.P., Shevchenko, V.P., Burenkov, V.I.: Suspended matter fluxes into bottom sediments of the Laptev Sea. Oceanology 39(4), 597–604 (1999)

    Google Scholar 

  56. Matishov, G.G., Kasatkina, N.G., Usyagina, I.S.: Technogenic radioactivity of waters of the central polar basin and adjacent Arctic water areas. Proceedings of the Academy of Sciences 485(1), 93–98 (2019)

    Google Scholar 

  57. Gedeonov, A.D., Petrov, E.R., Alexeev, V.G., et al.: Residual radioactive contamination at the peaceful underground nuclear explosion sites “Craton-3” and “ Crystal” in the Republic of Sakha (Yakutia). J. Environ. Radioact. 60(1–2), 221–234 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research is conducted under the GEOKHI RAS state assignment. The actinide luminescence research was supported by the grant of the Russian Science Foundation (project No 20-77-00092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Myasnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novikov, A.P., Goryachenkova, T.A., Travkina, A.V., Myasnikov, I.Y. (2023). Speciation of Actinides in the Environment. In: Kolotov, V.P., Bezaeva, N.S. (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-09883-3_42

Download citation

Publish with us

Policies and ethics