Skip to main content

ACTION: Automated Hardware-Software Codesign Framework for Low-precision Numerical Format SelecTION in TinyML

  • Conference paper
  • First Online:
Next Generation Arithmetic (CoNGA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13253))

Included in the following conference series:

  • 389 Accesses

Abstract

In this paper, a new low-precision hardware-software codesign framework is presented, to optimally select the numerical formats and bit-precision for TinyML models and benchmarks. The selection is performed by integer linear programming using constraints mandated by tiny edge devices. Practitioners can use the proposed framework to reduce design costs in the early stages of designing accelerators for TinyML models. The efficacy of various numerical formats is studied within a new low-precision framework, ACTION. Results assert that generalized posit and tapered fixed are suitable numerical formats for TinyML when the trade-off between accuracy and hardware complexity is desired.

H.F. Langroudi and V. Karia—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banbury, C., et al.: Mlperf tiny benchmark. In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (2021)

    Google Scholar 

  2. Curnick, D.J., et al.: Smallsats: a new technological frontier in ecology and conservation? Remote Sens. Ecol. Conserv. 8(2), 139–150 (2021)

    Article  Google Scholar 

  3. Reddi, V.J., et al.: Widening access to applied machine learning with tinyml. arXiv preprint arXiv:2106.04008 (2021)

  4. Banbury, C.R., et al.: Benchmarking tinyml systems: Challenges and direction. arXiv preprint arXiv:2003.04821 (2020)

  5. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8612–8620 (2019)

    Google Scholar 

  6. Rusci, M., Fariselli, M., Capotondi, A., Benini, L.: Leveraging automated mixed-low-precision quantization for tiny edge microcontrollers. In: Gama, J., et al. (eds.) ITEM/IoT Streams -2020. CCIS, vol. 1325, pp. 296–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66770-2_22

    Chapter  Google Scholar 

  7. Langroudi, H.F., Karia, V., Pandit, T., Kudithipudi, D.: Tent: Efficient quantization of neural networks on the tiny edge with tapered fixed point. arXiv preprint arXiv:2104.02233 (2021)

  8. Ghamari, S., et al.: Quantization-guided training for compact tinyml models. arXiv preprint arXiv:2103.06231 (2021)

  9. Fahim, F., et al.: hls4ml: an open-source codesign workflow to empower scientific low-power machine learning devices. arXiv preprint arXiv:2103.05579 (2021)

  10. Ravaglia, L., Rusci, M., Nadalini, D., Capotondi, A., Conti, F., Benini, L.: A tinyml platform for on-device continual learning with quantized latent replays. IEEE J. Emerg. Sel. Top. Circuits Syst. 11(4), 789–802 (2021)

    Google Scholar 

  11. Lin, J., Chen, W.M., Cai, H., Gan, C., Han, S.: Mcunetv2: memory-efficient patch-based inference for tiny deep learning. arXiv e-prints pp. arXiv-2110 (2021)

    Google Scholar 

  12. Langroudi, H.F., Carmichael, Z., Pastuch, D., Kudithipudi, D.: Cheetah: mixed low-precision hardware & software co-design framework for dnns on the edge. arXiv preprint arXiv:1908.02386 (2019)

  13. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the impact of precision quantization on the accuracy and energy of neural networks. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1474–1479. IEEE (2017)

    Google Scholar 

  14. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: posit arithmetic. Supercomputing Front. Innov. 4(2), 71–86 (2017)

    Google Scholar 

  15. Brumar, I., Zacharopoulos, G., Yao, Y., Rama, S., Wei, G.Y., Brooks, D.: Early DSE and automatic generation of coarse grained merged accelerators. arXiv preprint arXiv:2111.09222 (2021)

  16. Yao, Z., et al.: Hawq-v3: Dyadic neural network quantization. In: International Conference on Machine Learning, pp. 11875–11886. PMLR (2021)

    Google Scholar 

  17. Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., Soudry, D.: Improving post training neural quantization: layer-wise calibration and integer programming. arXiv preprint arXiv:2006.10518 (2020)

  18. Gustafson, L.J.: A generalized framework for matching arithmetic format to application requirements. https://posithub.org/ (2020)

  19. Langroudi, H.F., et al.: Alps: adaptive quantization of deep neural networks with generalized posits. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3100–3109 (2021)

    Google Scholar 

  20. Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S.: Ristretto: a framework for empirical study of resource-efficient inference in convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5784–5789 (2018)

    Article  Google Scholar 

  21. Langroudi, H.F., Karia, V., Gustafson, J.L., Kudithipudi, D.: Adaptive posit: parameter aware numerical format for deep learning inference on the edge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 726–727 (2020)

    Google Scholar 

  22. Tambe, T., et al.: Algorithm-hardware co-design of adaptive floating-point encodings for resilient deep learning inference. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  23. Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., Krishna, T.: Scale-sim: Systolic CNN accelerator simulator. arXiv preprint arXiv:1811.02883 (2018)

  24. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  25. Li, S., Romaszkan, W., Graening, A., Gupta, P.: Swis-shared weight bit sparsity for efficient neural network acceleration. arXiv preprint arXiv:2103.01308 (2021)

  26. Zhou, C., et al.: Analognets: Ml-hw co-design of noise-robust tinyml models and always-on analog compute-in-memory accelerator. arXiv preprint arXiv:2111.06503 (2021)

  27. Gousev, E.: Recent progress on tinyml technologies and opportunities. https://www.youtube.com/ (2021)

  28. Banbury, C., et al.: Micronets: neural network architectures for deploying tinyml applications on commodity microcontrollers. In: Proceedings of Machine Learning and Systems, vol. 3 (2021)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Matrix AI Consortium for Human Well-Being at UTSA. The authors would like to thank Dr. John Gustafson, who is the inventor of Posit, Generalized posit and Tapered Fixed-point and has provided valuable insights over the years. The authors would also like to express gratitude to NUAI lab members at RIT and UTSA who supported this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed F. Langroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Langroudi, H.F., Karia, V., Pandit, T., Mashaido, B., Kudithipudi, D. (2022). ACTION: Automated Hardware-Software Codesign Framework for Low-precision Numerical Format SelecTION in TinyML. In: Gustafson, J., Dimitrov, V. (eds) Next Generation Arithmetic. CoNGA 2022. Lecture Notes in Computer Science, vol 13253. Springer, Cham. https://doi.org/10.1007/978-3-031-09779-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09779-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09778-2

  • Online ISBN: 978-3-031-09779-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics